화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.6, 730-736, December, 2015
반응표면분석법을 이용한 결정화 공정의 최적화
Optimization of a Crystallization Process by Response Surface Methodology
E-mail:
초록
Cyclotrimethylene trinitramine (RDX)은 대표적인 니트라민 계열 고폭 화약으로 충격, 마찰, 열, 정전기 등 비의도적인 자극에 대한 둔감화를 위해 서브마이크론 크기 RDX 입자 제조가 요구되고 있다. 본 연구에서는 drowning-out 결정화에 의한 서브마이크론 RDX 입자 제조 조건을 최적화하기 위하여 RDX 농도, 반용매 온도, 반용매 질량을 독립변수로 설정하였으며 반응 표면 분석법의 일종인 중심합성회전설계에 의한 실험 계획이 수립되었다. 도출된 회귀 모델의 수정 결정계수(adjusted determination coefficient, adj. R2)는 0.9984이며 p 값은 0.01 이하로 유의했다. 회귀 분석에 의해 독립 변수간 자기상관성은 없으며 교호작용 효과가 확인되었다. 중심합성회전설계에 의한 최적화로부터 도출된 최소평균 입경의 RDX 입자 제조 조건은 RDX 농도 3 wt%, 반용매 온도 0.2 ℃, 반용매 질량 266 g이었다. 회귀 모델에서 예측된 RDX 입자의 평균 입경은 0.53 μm이며 실제 제조된 RDX 입자의 평균 입경도 0.53 μm이었다. X선 회절 분석과 FT-IR 분석으로부터 RDX 입자의 결정형은 α형이었다.
Cyclotrimethylene trinitramine (RDX) is a high explosive commonly used for military applications. Submicronization of RDX particles has been a critical issue in order to alleviate the unintended and accidental stimuli toward safer and more powerful performances. The purpose of this study is to optimize experimental variables for drowning-out crystallization applied to produce submicron RDX particles. Effects of RDX concentration, anti-solvent temperature and anti-solvent mass were analyzed by the central composite rotatable design. The adjusted determination coefficient of regression model was calculated to be 0.9984 having the p-value less than 0.01. Response surface plots based on the central composite rotatable design determined the optimum conditions such as RDX concentration of 3 wt%, anti-solvent temperature of 0.2 ℃ and anti-solvent mass of 266 g. The optimum and experimental diameters of RDX particles were measured to be 0.53 μm and 0.53 μm, respectively. The regression model satisfactorily predicts the average diameter of RDX particles prepared by drowning-out crystallization. Structure of RDX crystals was found to be α-form by X-ray diffraction analysis and FT-IR spectroscopy.
  1. Walley SM, Field JE, Greenaway MW, Mater. Sci. Technol., 22(4), 402 (2006)
  2. Essel JT, Processing Energetic Materials with Supercritical Fluid Precipitation Techniques, Ph.D., Dissertation, Pennsylvania State University, Pennsylvania, USA (2012).
  3. Liu J, Jiang W, Yang Q, Song J, Hao GZ, Li FS, Def. Technol., 10(2), 184 (2014)
  4. Bellitto VJ, Melnik MI, Sorensen DN, Chang JC, J. Therm. Anal. Calorim., 102, 557 (2010)
  5. Armstrong RW, Coffey CS, DeVost VF, Elban WL, J. Appl. Phys., 68(3), 979 (1990)
  6. Tao P, He DC, Xu GG, Initiat. Pyrotech., 4, 23 (2004)
  7. Pennie AM, Can. J. Chem. Eng., 36(2), 78 (1958)
  8. Patel R, Cook P, Crane C, Redner P, Kapoor D, Grau H, Gandzelko A, Production and Coating of Nano-RDX Using Wet Milling, NDIA Insensitive Munitions and Energetic Materials Technology Symposium, October 15-18, Miami, USA (2007).
  9. Stepanov V, Production of Nanocrystalline RDX by RESS: Process Development and Materials Characterization, Ph.D. Dissertation, New Jersey Institute of Technology, New Jersey, USA (2008).
  10. Spitzer D, Baras C, Schafer MR, Ciszek F, Siegert B, PROPELLANT-EXPLOS-PYROTECH, 36(1), 65 (2011)
  11. Frolov YV, Pivkina AN, Ul’yanova PA, Zav’yalov SA, Combust. Explos., 38(6), 709 (2002)
  12. Masuhara H, Nakanishi H, Sasaki K, Single Organic Nanoparticles, 17-31, Springer-Verlag, New York, USA (2003).
  13. Song X, Li F, Def. Sci. J., 59(1), 37 (2009)
  14. Chen H, Ma H, Pei Y, Liu D, Lu C, J. Ball, 15(3), 11 (2003)
  15. Park SH, Modern Design of Experiments, 521-571, Minyoug Pub., Seoul, Republic of Korea (2011).
  16. Lee SE, Shim HM, Kim JK, Han SK, Lee KD, Chae JS, Koo KK, Theor. Appl. Chem. Eng., 20(2), 1468 (2014)
  17. Guan X, Yao H, Food Chem., 106, 345 (2008)
  18. O’Brien RM, Qual. Quant., 41, 673 (2007)
  19. Yoon IH, Lee SY, Modern Statistics, 344-349, Samyoung Publishing Corp., Seoul, Republic of Korea (1997).
  20. Pavia DL, Lampman GM, Kriz GS, Introduction to Spectroscopy : A Guide for Students of Organic Chemistry, 2nd Ed., 63-71, Harcourt Brace & Company, Orlando, USA (1996).
  21. Karpowicz RJ, Sergio ST, Brill TB, Ind. Eng. Chem. Prod. Res. Dev., 22, 363 (1983)
  22. Herrmann M, Fietzek H, Powder Diffr., 20(2), 105 (2005)
  23. Herrmann M, Bohn MA, Aging of RDX Crystals Investigated by X-ray Diffraction, IM & EM Technical Symposium, October 7-10, San Diego, USA (2013).