Journal of Industrial and Engineering Chemistry, Vol.32, 44-48, December, 2015
Chlorhexidine-loaded xanthan gum-based biopolymers for targeted, sustained release of antiseptic agent
E-mail:
We engineered a chlorhexidine-loaded xanthan gum-based biopolymer for the targeted release of
antiseptic agent. To increase the viscosity and adherent properties of the xanthan gum scaffold,
biocompatible materials were prepared and added to the scaffold. The chlorhexidine-loaded xanthan gum was gelated prior to physicochemical characterization, and exhibited shear-thinning behavior. Rheological studies were performed to measure biopolymer viscosity using a Brookfield viscometor. As xanthan gum concentration increased, biopolymer viscosity increased as well. Addition of various biocompatible materials resulted in higher or similar viscosities as compared to the chlorhexidine-loaded xanthan gum-based chlorhexidine biopolymer. In this study, we prepared biocompatible, antiseptic, xanthan gum-based biopolymers for the targeted delivery of chlorhexidine. Similar biomaterials may have potential as effective local treatment modalities for temporary disinfection purpose in medical applications.
- Simoes AFS, Veiga F, J. Biomater. Nanobiotechnol., 3, 15 (2012)
- Geckil H, Xu F, Zhang X, Moon S, Demirci U, Nanomedicine, 5, 469 (2010)
- Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE, Drug Dev. Ind. Pharm., 28, 957 (2002)
- Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ, Acta Biomater., 7, 1634 (2011)
- Li Y, Rodrigues J, Tomas H, Chem. Soc. Rev., 41, 2193 (2012)
- Van Vlierberghe S, Dubruel P, Schacht E, Biomacromolecules, 12(5), 1387 (2011)
- Yu L, Ding J, Chem. Soc. Rev., 37, 1473 (2008)
- Guvendiren M, Lu HD, Burdick JA, Soft Matter, 8, 260 (2012)
- Bueno VB, Bentini R, Catalani LH, Petri DF, Carbohydr. Polym., 92, 1091 (2013)
- Garcia-Ochoa F, Santos VE, Casas JA, Gomez E, Biotechnol. Adv., 18, 549 (2000)
- Kar R, Mohapatra S, Bhanja S, Das D, Barik B, Iran. J. Pharm. Res.-IJPR, 9, 13 (2010)
- Quinn FX, Hatakeyama T, Takahashi M, Hatakeyama H, Polymer, 35(6), 1248 (1994)
- Zatz JL, Knapp S, J. Pharm. Sci., 73, 468 (1984)
- Song KW, Kuk HY, Chang GS, Korea-Aust. Rheol. J., 18(2), 67 (2006)
- Wiederschain GY, Biochem. Moscow, 72, 675 (2007)
- Iijima M, Shinozaki M, Hatakeyama T, Takahashi M, Hatakeyama H, Carbohydr. Polym., 68, 701 (2007)
- Zhang F, Luan T, Kang D, Jin Q, Zhang H, Yadav MP, Food Hydrocolloids, 43, 218 (2015)
- Chantaro P, Pongsawatmanit R, Nishinari K, Food Hydrocolloids, 31, 183 (2013)
- Stokke BT, Elgsaeter A, Skjak-Braek G, Smidsrod O, Carbohydr. Res., 160, 13 (1987)
- Capron I, Brigand G, Muller G, Polymer, 38(21), 5289 (1997)
- Liu Z, Yao P, Carbohydr. Polym., 132, 490 (2015)
- Jones CG, Periodontology, 2000, 55 (1997)
- Huynh TT, Padois K, Sonvico F, Rossi A, Zani F, Pirot F, Doury J, Falson F, Eur. J. Pharm. Biopharm., 74, 255 (2010)
- Paolantonio M, D’Angelo M, Grassi RF, Perinetti G, Piccolomini R, Pizzo G, Annunziata M, D’Archivio D, D’Ercole S, Nardi G, Guida L, J. Periodontol., 79, 271 (2008)
- Rao MA, Flow and Functional Models for Rheological Properties of Fluid Foods, Springer US, 2007p. 27.
- Farris S, Song J, Huang Q, J. Agric. Food Chem., 58, 998 (2010)
- Al Ghanami RC, Saunders BR, Bosquillon C, Shakesheff KM, Alexander C, Soft Matter, 6, 5037 (2010)
- Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A, Int. J. Pharm., 455, 219 (2013)
- Calvo P, Remunanlopez C, Vilajato JL, Alonso MJ, J. Appl. Polym. Sci., 63(1), 125 (1997)
- Zhang JF, Wu R, Fan Y, Liao S, Wang Y, Wen ZT, Xu X, J. Dent. Res., 93, 1283 (2014)
- Pastor MV, Costell E, Izquierdo L, Dura L, Food Hydrocolloids, 8, 265 (1994)
- Choppe E, Puaud F, Nicolai T, Benyahia L, Carbohydr. Polym., 82, 1228 (2010)
- Dintzis FR, Babcock GE, Tobin R, Carbohydr. Res., 13, 257 (1970)