화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.32, 178-186, December, 2015
Influencing factors on sorption of TNT and RDX using rice husk biochar
E-mail:,
2,4,6-Trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) are the most commonly used nitro-organic explosives in contemporary military munitions, and readily be introduced into the environment, especially in groundwater supplies. In the present study, rice husk biochar (RHBC) prepared by pyrolysis at 700 ℃ was used for the treatment of TNT and RDX in waste water by batch sorption. The prepared RHBC chemical and physical characteristics were well characterized using analytical spectroscopic techniques. In order to develop the sorption mechanism of TNT and RDX onto RHBC, the factors influencing sorption were studied. The results demonstrated that TNT and RDX sorption depended on the pH value of the aqueous solution, and decreased as pH increased from 2.0 to 6.0 and was attributed with their pKa1 values along with their physical and chemical characteristics. The batch sorption results revealed that the sorption of the two explosives onto RHBC was rate limiting monolayer chemisorptions on homogeneous surface. These results suggested that the sorption of TNT and RDX occurs through weak electrostatic interactions as well as through charge transfer between - NO2 and ∏-∏ electrons of explosives and RHBC surface functional groups.
  1. Bruns-Nagel D, Scheffer S, Casper B, Garn H, Drzyzga O, Von Lop E, Gemsa D, Environ. Sci. Technol., 33, 2566 (1999)
  2. Honeycutt M, Jarvis A, McFairland V, Ecotox. Environ. Safe., 35, 282 (1996)
  3. IRIS (Integrated Risk Information System), United States Environmental Protection Agency. Available from: http://ww.epa.gov/iriswebp/iris/index.html (01.04.10).
  4. Naja G, Apiratikul R, Pavasant P, Volesky B, Hawari J, Environ. Pollut., 157, 2405 (2009)
  5. Dimitrios K, Albert LJ, Raj B, Steve C, Pure Appl. Chem., 83, 1407 (2011)
  6. Falone SZ, Vieira EM, J. Liq. Chromatogr. Relat. Technol., 29, 1645 (2006)
  7. Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR, J. Biosci. Bioeng., 103(6), 509 (2007)
  8. Cao X, Ma L, Gao B, Harris W, Environ. Sci. Technol., 43, 3285 (2009)
  9. Cao X, Ma L, Liang Y, Gao B, Harris W, Environ. Sci. Technol., 45, 4884 (2011)
  10. Liu ZG, Zhang FS, J. Hazard. Mater., 167(1-3), 933 (2009)
  11. Zheng W, Guo MX, Chow T, Bennett DN, Rajagopalan N, J. Hazard. Mater., 181(1-3), 121 (2010)
  12. Cao X, Harris W, Bioresour. Technol., 10, 5222 (2010)
  13. Han X, Liang CF, Li TQ, Wang K, Huang HG, Yang XE, J. Zhejiang Univ. Sci. B, 14, 640 (2013)
  14. Wilson K, How biochar works in soil, Biochar J. Arbaz, Switzerland, 2014.
  15. Mohan D, Sarswat A, Ok YS, Pittman CU, Bioresour. Technol., 160, 191 (2014)
  16. Beesley L, Marmiroli M, Environ. Pollut., 159, 474 (2011)
  17. Soldatkina LM, Sagaidak EV, Menchuk VV, J. Water Chem. Technol., 31(4), 238 (2009)
  18. Chen B, Chen Z, Chemosphere, 76, 127 (2009)
  19. Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S, J. Ind. Eng. Chem., 20(4), 2317 (2014)
  20. Kalyan Y, Mok-Ryun Y, Hoon R, Jae-Kyu Y, Yoon-Young C, Desalin. Water Treat., 51(40-42), 7732 (2013)
  21. Kalyan Y, Mok-Ryun Y, Hoon R, Jae-Kyu Y, Yoon-Young C, Res. J. Chem. Environ., 17(4), 62 (2013)
  22. Roh H, Yu MR, Yakkala K, Koduru JR, Yang JK, Chang YY, J. Ind. Eng. Chem., 26, 226 (2015)
  23. Ogawa M, Okimori Y, Aust. J. Soil Res., 48, 489 (2010)
  24. Lu SG, Sun FF, Zong YT, Catena, 114, 37 (2014)
  25. Milla OV, Rivera1 EB, Huang WJ, Chien CC, Wang YMJ, Soil Sci. Plant Nutr., 13(2), 251 (2013)
  26. Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S, Energy Policy, 42, 49 (2012)
  27. Heo YJ, Park SJ, J. Ind. Eng. Chem., ttp://dx.doi.org/10.1016/j.jiec.2015.07.006 (in press). (2015)
  28. Jeon DH, Lim TJ, Park SJ, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2015.06.032 (in press). (2015)
  29. Kalderis D, Koutoulakis D, Paraskeva P, Diamadopoulos E, Otal E, del Valle JO, Fernandez-Pereira C, Chem. Eng. J., 144(1), 42 (2008)
  30. Katal R, Baei MS, Rahmati HT, Esfandian H, J. Ind. Eng. Chem., 18(1), 295 (2012)
  31. Liu ZG, Zhang FS, J. Hazard. Mater., 167(1-3), 933 (2009)
  32. Agrafioti E, Kalderis D, Diamadopoulos E, J. Environ. Manage., 133, 309 (2014)
  33. Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E, J. Environ. Manage., 96(1), 35 (2012)
  34. Xu RK, Xiao SC, Yuan JH, Zhao AZ, Bioresour. Technol., 102(22), 10293 (2011)
  35. Malik PK, Dyes Pigment., 56(3), 239 (2003)
  36. Pansu M, Gautheyrou J, Handbook of Soil Analysis - Mineralogical, Organic and Inorganic Methods, Springer-Verlag, Berlin, Heidelberg, New-York, 2006.
  37. NF ISO-10390, De´termination of pH in Qualite´ des sols, AFNOR, 1994p. 1996.
  38. Kumar S, Loganathan VA, Gupta RB, Branett MO, J. Environ. Manage., 92, 2504 (2011)
  39. Lehmann J, Joseph S, Biochar for Environmental Management: Science & Technology, Earth Scans Publishers, UK and USA, 2009.
  40. Lehmann J, Front. Ecol. Environ., 5, 381 (2007)
  41. Chang CH, Lehmann J, Thies JE, Burton SD, Engelhard MH, Org. Geochem., 37, 1477 (2006)
  42. Chang CH, Lehmann J, Engelhard MH, Geochem. Cosmochim. Acta, 72, 1598 (2008)
  43. Bagreev A, Bandosz TJ, Locke DC, Carbon, 39, 1971 (2001)
  44. Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, Labbe N, Energy Fuels, 25(10), 4693 (2011)
  45. Serencam H, Ozdes D, Duran C, Tufekci M, Environ. Monit. Assess., 185, 6003 (2013)
  46. Reddy KJ, Yoon-Young C, Jae-Kyu Y, Im-Soon K, The Sci. World J., http://dx.doi.org/10.1155/2013/917146., 2013, 14 (2013)
  47. Oha BT, Sarathb G, Sheaa PJ, Drijberc RA, Comfort SD, J. Microbiol. Methods, 42, 149 (2000)
  48. Emmrich M, Environ. Sci. Technol., 33(21), 3802 (1999)
  49. Felt DR, Larsen SL, Valente EJ, UV-Vis Spectroscopy of 2,4,6-Trinitrotoluene-Hydroxide Reaction, ERDC/EL TR-02-22, U.S. Army Environmental Research and Development Center, Vicksburg, MS, 2002.
  50. Felt DR, Valente EJ, Reid BG, The Alkaline Hydrolysis Reaction of TNT and the Involvement of a Long-Lived Organic Radical, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2006.
  51. Davis JL, Nestler CC, Felt DR, Larson SL, Effect of treatment pH on the end products of the alkaline hydrolysis of TNT and RDX, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2007.
  52. Wardman P, Environ. Health Perspect., 64, 309 (1985)
  53. Singh SN, Mishra S, Biol. Rem. Explos. Residues Environ. Sci. Eng., 371 (2014)
  54. Lagergen S, Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1 (1898)
  55. Ho YS, McKay G, Process Saf. Environ. Protect., 76(2), 183 (1998)
  56. Chowdhury ZZ, Preparation, characterization and adsorption of heavy metals onto activated adsorbent materials derived from agricultural residues, University Malaya, Kuala Lumpur, Malaysia, 2013 (PhD thesis).
  57. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  58. Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
  59. Temkin MJ, Pyzhev V, Acta Physicochem., 12, 217 (1940)
  60. Haberman J, Castorina TC, Technical Report on Charcoal Regeneration. Part 3. Mechanism of RDX Adsorption, US Army Armament Research and Devel-opment Command LARGE Caliber Weapon systems Laboratory Dover, New Jersey, 1982.
  61. Lee CKM, Michael KS, Competitive Adsorption of Cyclotrimethy-Lenetrinitramine (RDX) and Cyclotetramethylenetetranitramine (HMX), Department of Civil and Environmental Engineering University of California, Los Angeles, California, 1996, Available from: http://www.seas.ucla.edu/stenstro/r/r39.pdf.
  62. Reddad Z, Gerente C, Andres Y, Cloirec PL, Environ. Sci. Technol., 36, 2067 (2002)
  63. Castaldi P, Santona L, Enzo S, Melis P, J. Hazard. Mater., 156(1-3), 428 (2008)
  64. Cho C, Bae S, Lee W, Adv. Environ. Res., 1(1), 1 (2012)
  65. Dontsova KM, Hayes C, Pennington JC, Porter B, J. Environ. Qual., 38, 1458 (2009)