화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.32, 345-352, December, 2015
Analytical pyrolysis properties of waste medium-density fiberboard and particle board
E-mail:
Medium-density fiberboard (MDF) and particle board (PB) showed similar pyrolysis characteristics. Thermogravimetric analysis displayed the main weight loss between 200 and 400 ℃, continued up to 600 ℃. The activation energy (Ea) values at each conversion were in the range of 166.372 kJ/mol for MDF and 161.325 kJ/mol for PB and indicated independent reactions of hemicellulose, cellulose, lignin and char stabilization. Isothermal pyrolysis produced hemicellulose pyrolyzates at 300 ℃. The main products at 400 8C had similar distribution between MDF and PB. At 600 ℃, gas products were increased due to the secondary cracking of pyrolyzates.
  1. Koroneos C, Spachos T, Moussiopoulos N, Renew. Energy, 28(2), 295 (2003)
  2. Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gill C, Renew. Sust. Energ. Rev., 18, 134 (2013)
  3. Guidelines for National Greenhouse Gas Inventories, IPCC, 2006.
  4. Iakovou E, Karagiannidis A, Vlachos D, Toka A, Malamakis A, Waste Manage., 30, 1860 (2010)
  5. Sheldon RA, Sanders JPM, Catal. Today, 239, 3 (2014)
  6. Gu X, Ma X, Li L, Liu G, Cheng K, Li Z, J. Anal. Appl. Pyrolysis, 102, 16 (2013)
  7. Park YK, Park KS, Park SH, Appl. Chem. Eng., 24(6), 672 (2013)
  8. Park YK, Choi S, Jeon J, Park S, Ryoo R, Kim J, Jeong K, J. Nanosci. Nanotechnol., 12, 5367 (2012)
  9. Kim JW, Lee HW, Lee IG, Jeon JK, Ryu C, Park SH, Jung SC, Park YK, Renew. Energy, 65, 41 (2014)
  10. Heo HS, Park HJ, Park YK, Ryu C, Suh DJ, Suh YW, Yim JH, Kim SS, Bioresour. Technol., 101, S91 (2010)
  11. Kim SD, Park JK, Thermochim. Acta, 264, 137 (1995)
  12. Telmo C, Lousada J, Moreira N, Bioresour. Technol., 101(11), 3808 (2010)
  13. Parthasarathy P, Narayanan KS, Arockiam L, Biomass Bioenerg., 58, 58 (2013)
  14. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
  15. Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B, Biomass Bioenerg., 61, 254 (2014)
  16. Dutta S, Pal S, Biomass Bioenerg., 62, 182 (2014)
  17. Wu Y, Zhao Z, Li L, He F, J. Fuel Chem. Technol., 37, 427 (2009)
  18. Shen DK, Gu S, Luo KH, Wang SR, Fang MX, Bioresour. Technol., 101(15), 6136 (2010)
  19. Pandey MP, Kim CS, Chem. Eng. Technol., 34(1), 29 (2011)
  20. Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT, Energy Fuels, 20(1), 388 (2006)
  21. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA, J. Anal. Appl. Pyrolysis, 105, 143 (2014)
  22. Sanchez-Silva L, Lopez-Gonzalez D, Villasenor J, Sanchez P, Valverde JL, Bioresour. Technol., 109, 163 (2010)
  23. Kim YM, Kim S, Lee JY, Park YK, Environ. Eng. Sci., 30, 706 (2013)
  24. Tsuge S, Ontani H, Watanabe C, Pyrolysis-GC/MS Data Book of Synthetic Polymers, 1st ed., Elsevier, Oxford, UK, 2011 (Reference to a chapter in an edited book: Chapter 2.1).
  25. Wang SR, Ru B, Lin HZ, Luo ZY, Bioresour. Technol., 143, 378 (2013)
  26. Ponder GR, Richards GN, Carbohydr. Res., 218, 143 (1991)
  27. Garcia-Maraver A, Salvachua D, Martinez MJ, Diaz LF, Zamorano M, Waste Manage., 33, 2245 (2013)
  28. Shen DK, Bridgwater AV, J. Anal. Appl. Pyrolysis, 87, 199 (2010)
  29. Bridgwater AV, J. Anal. Appl. Pyrolysis, 51, 3 (1999)
  30. Bridgwater AV, Meier D, Radlein D, Org. Geochem., 30, 1479 (1999)