Korean Journal of Chemical Engineering, Vol.33, No.1, 63-72, January, 2016
Modeling and experimental studies of ammonia absorption in a spray tower
E-mail:
We did an experimental study on ammonia absorption in a spray tower. The kinetic characteristics of droplets were investigated by considering the forces acting on a droplet. The gas-phase mass transfer coefficient was deduced with the Colburn analogy method. A simplified model for predicting NH3 capture with a spray tower has been presented based on mass transfer and ionic equilibrium, which was successfully validated against experimental data. The influences and the sensitivity analysis of main operating parameters on the absorption efficiency were analyzed. As the most sensitive parameter, the mean droplet diameter was obtained by fitting experimental data with an empirical correlation. The distributions of two typical process parameters along the absorber were also simulated. Decreasing the pH value of absorbent is an effective but restrictive way to strengthen the mass transfer rate on account of insufficient liquid-side resistance.
- Huang CH, Environ. Eng. Sci., 22, 535 (2005)
- Pistarino C, J. Loss Prevent. Proc., 16, 157 (2003)
- Eremin AP, Kotov GV, Sidorovich TV, Fisenko SP, J. Eng. Phys. Thermophys., 80, 461 (2007)
- Cho SK, Lee MK, Kim DH, Yun YM, Jung KW, Shin HS, Oh SE, Korean J. Chem. Eng., 31(4), 619 (2014)
- Guo XJ, Tak JK, Johnson RL, J. Hazard. Mater., 166(1), 372 (2009)
- Proll T, Siefert IG, Friedl A, Hofbauer H, Ind. Eng. Chem. Res., 44(5), 1576 (2005)
- Li YW, Sun BC, Zeng ZQ, Song YH, Chen JM, Chu GW, Chen JF, Shao L, Can. J. Chem. Eng., 93(1), 116 (2015)
- Kim S, Korean J. Chem. Eng., 32(2), 303 (2015)
- Jie H, Ling JM, Bin TC, Sheng SJ, Korean J. Chem. Eng., 28(11), 2190 (2011)
- Lim Y, Choi M, Han K, Yi M, Lee J, Ind. Eng. Chem. Res., 52(43), 15131 (2013)
- Ochowiak M, Broniarz-Press L, Chem. Eng. Process., 50(3), 345 (2011)
- Neveux T, Le Moullec Y, Ind. Eng. Chem. Res., 50(12), 7579 (2011)
- Zhu J, Ye SC, Bai J, Wu ZY, Liu ZH, Yang YF, Fuel Process. Technol., 129, 15 (2015)
- Shen ZG, Chen X, Tong M, Guo SP, Ni MJ, Lu J, Fuel, 105, 578 (2013)
- Codolo M, Bizzo W, Bertazzoli R, Chem. Eng. Technol., 36(7), 1255 (2013)
- Ocfemia K, Zhang Y, Tan Z, Trans. ASAE, 48, 1561 (2005)
- Javed KH, Mahmud T, Purba E, Chem. Eng. Res. Des., 84(A6), 465 (2006)
- Marocco L, Chem. Eng. J., 162(1), 217 (2010)
- Codolo MC, Bizzo WA, Int. J. Heat Mass Transf., 66, 80 (2013)
- Adamowicz RF, Atmos. Environ., 13, 105 (1979)
- Taniguchi I, Yokoyama H, Asano K, J. Chem. Eng. Jpn., 32(1), 145 (1999)
- Adewuyi YG, Carmichael GR, Atmos. Environ., 16, 719 (1982)
- Sirotkin FV, Yoh JJ, J. Comput. Phys., 231, 1650 (2012)
- Ashgriz N, Handbook of atomization and sprays: theory and applications, Springer, New York (2011).
- Zhu J, Wu ZY, Ye SC, Liu ZH, Yang YF, Bai J, CIESC J., 65, 4709 (2014)
- Marocco L, Inzoli F, Int. J. Multiph. Flow, 35(2), 185 (2009)
- Kallinikos LE, Farsari EI, Spartinos DN, Papayannakos NG, Fuel Process. Technol., 91(12), 1794 (2010)
- Tosun I, Modeling in transport phenomena: A conceptual approach, Elsevier Science & Technology Books (2007).
- Turpin A, Couvert A, Laplanche A, Paillier A, Can. J. Chem. Eng., 87(1), 53 (2009)
- Saboni A, Alexandrova S, Chem. Eng. J., 84(3), 577 (2001)
- Zhong Y, Gao X, Huo W, Luo ZY, Ni MJ, Cen KF, Fuel Process. Technol., 89(11), 1025 (2008)
- Feng ZG, Michaelides EE, Int. J. Heat Mass Transf., 43(2), 219 (2000)
- Warych J, Szymanowski M, Ind. Eng. Chem. Res., 40(12), 2597 (2001)
- Kawazuishi K, Prausnitz JM, Ind. Eng. Chem. Res., 26, 1482 (1987)
- Chen WH, Atmos. Environ., 38, 1107 (2004)
- Jia Y, Zhong Q, Fan X, Chen Q, Sun H, Korean J. Chem. Eng., 28(4), 1058 (2011)
- Blanes-Vidal V, Sommer SG, Nadimi E, Biosys. Eng., 104, 510 (2009)
- Ma SC, Zang B, Song HH, Chen GD, Yang JH, Int. J. Heat Mass Transf., 67, 696 (2013)
- Tanda T, Shirai K, Matsumura Y, Kitahara H, Ind. Eng. Chem. Res., 50(23), 13554 (2011)
- Dou BL, Pan WG, Jin Q, Wang WH, Li Y, Energy Conv. Manag., 50(10), 2547 (2009)