화학공학소재연구정보센터
Clean Technology, Vol.21, No.4, 235-240, December, 2015
티타늄이 도핑된 이산화 바나듐의 열변색 특성에 관한 연구
A Study on the Thermochromic properties of Ti-doped Vanadium Dioxide
E-mail:
초록
본 연구에서는 열변색 물성을 향상시키기 위한 방안의 하나로 0~0.5 at % 범위의 티타늄을 도핑한 이산화 바나듐(Ti-VO2)을 제조하였다. Ti-VO2 입자들은 바나딜설페이트, 중탄산암모늄, 사염화 티타늄 등을 사용하여 바나듐 화합물 전구체를 제조한 후 열분해법을 이용하여 제조하였다. 제조된 시료들의 결정 구조, 형상, 화학적 구조 및 열변색 특성은 X-선 회절분석기, 전계방사 주사전자현미경, X-선 광전자 분광기, 시차주사열량분석기, 자외선-가시광선-근적외선 분광기 등을 이용하여 분석하였다. 제조된 Ti-VO2 입자들은 단사 결정계를 지니고 있고, 또한 티타늄이 이산화 바나듐 결정내에 잘 도핑되어 있음을 확인할 수 있었다. 티타늄 도핑량이 증가함에 따라 최종 Ti-VO2 입자들의 크기가 작아지고 상전이 온도가 낮아졌으며, 또한 NIR switching efficiency는 증가하였다.
In this study, vanadium dioxide was doped with titanium (0~0.5 at %) to improve thermochromic properties. The titanium doped vanadium dioxide (Ti-VO2) particles were prepared via thermolysis process using vanadyl sulfate, ammonium bicarbonate and titianium chloride as precursors. The crystal structure, morphology, chemical bonding and thermochromic properties were investigated by using XRD, FE-SEM, XPS, DSC and UV-Vis-NIR spectroscopy. It was found that titanium was successfully doped into the crystal lattice of VO2 and the obtained Ti-VO2 particles have monoclinic structure. With increasing Ti concentration, the particle size and phase transition temperature of Ti-VO2 particles decreased and NIR switching efficiency increased.
  1. Morin FJ, Phys. Rev. Lett., 3, 34 (1959)
  2. Ji SD, Zhang F, Jin P, Sol. Energy Mater. Sol. Cells, 95(12), 3520 (2011)
  3. Kiri P, Hyett G, Binions R, Adv. Mater. Lett., 1(2), 86 (2010)
  4. Luo YY, Zhu LQ, Zhang YX, Pan SS, Xu SC, Liu M, Li GH, J. Appl. Phys., 113, 183520 (2013)
  5. Parkin IV, Manning TD, J. Chem. Educ., 83, 393 (2006)
  6. Shi JQ, Zhou SX, You B, Wu LM, Sol. Energy Mater. Sol. Cells, 91(19), 1856 (2007)
  7. Du J, Gao YF, Luo HJ, Kang LT, Zhang ZT, Chen Z, Cao CX, Sol. Energy Mater. Sol. Cells, 95(2), 469 (2011)
  8. Chen S, Liu J, Wang L, Luo H, Gao Y, J. Phys. Chem. C, 118, 18938 (2014)
  9. Zheng C, Zhang X, Zhang J, Liao K, J. Solid State Chem., 156, 274 (2001)
  10. Hwang KJ, Jo CW, Yoo JW, Appl. Chem. Eng., 24(1), 44 (2013)
  11. Li M, Wu X, Li L, Wang Y, Li D, Pan J, Li S, Sun L, Li G, J. Mater. Chem. A, 2, 4520 (2014)
  12. Xiao XD, Zhang H, Chai GQ, Sun YM, Yang T, Cheng HL, Chen LH, Miao L, Xu G, Mater. Res. Bull., 51, 6 (2014)
  13. Gao Y, Cao C, Dai L, Luo H, Kanehira M, Ding Y, Wang ZL, Energy Environ. Sci., 5, 8708 (2012)
  14. Song LW, Zhang YB, Huang WX, Shi QW, Li DX, Zhang Y, Xu YJ, Mater. Res. Bull., 48(6), 2268 (2013)
  15. Wu Y, Fan L, Chen S, Shen S, Chen F, Mater. Lett., 127, 44 (2014)
  16. Wu X, Wu Z, Zhang H, Niu R, He Q, Ji C, Wang J, Jiang Y, Surf. Coat. Technol., 276, 248 (2015)
  17. Ye J, Zhou L, Liu F, Qi J, Gong W, Lin Y, Ning G, J. Alloy. Compd., 504, 503 (2010)
  18. Chen S, Dai L, Liu J, Gao Y, Liu X, Chen Z, Zhou J, Cao C, Han P, Luo H, Kanahira M, Phys. Chem. Chem. Phys., 15, 17537 (2013)
  19. Wu Y, Fan L, Liu Q, Chen S, Huang W, Chen F, Liao G, Zou C, Wu Z, Sci. Rep., 5, 9328 (2015)
  20. Zhang ZT, Gao YF, Chen Z, Du J, Cao CX, Kang LT, Luo HJ, Langmuir, 26(13), 10738 (2010)
  21. Gao Y, Luo H, Zhang Z, Kang L, Chen Z, Du J, Kanehira M, Cao C, Nano Energy, 1, 221 (2012)
  22. Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS, Renew. Sust. Energ. Rev., 26, 353 (2013)