화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.2, 423-437, February, 2016
Simultaneous multi-objective optimization of a new promoted ethylene dimerization catalyst using grey relational analysis and entropy measurement
E-mail:
A hybrid approach between the Taguchi method and grey relational analysis (GRA) with entropy measurement was applied to determine a single optimum setting for reaction factors of the proposed ethylene dimerization catalyst having overall selectivity to 1-butene (S1-btn (%)) and turnover frequency (TOF (h.1)) as multiple quality characteristics. Titanium tetrabutoxide (Ti(OC4H9)4) catalyst precursor in combination with triethyl aluminum (TEA) activator, 1,4-dioxane as a suitable modifier, and ethylene dichloride (EDC) as a novel promoter were used in the catalysis. Control factors of temperature, pressure, Al/Ti, 1,4-dioxane/Ti, and EDC/Ti mol ratios were investigated on three levels and their main effects were discussed. The effect of the binary interaction between temperature, pressure, and Al/Ti mol ratio was also examined. Weight of the responses was determined using entropy. Analysis of variance (ANOVA) for data obtained from GRA indicated that EDC/Ti mol ratio with 27.64% contribution had the most profound effect on the multiple quality characteristics. Development of the weighted Grey-Taguchi method used the Taguchi method as its basic structure, adopted GRA to deal with multiple responses, and entropy to enhance the reasonability of the comprehensive index produced by GRA to make the results more objective and accurate. Overall, these combined mathematical techniques improved catalytic performance for 1-butene production.
  1. Lappin GR, Sauer JD, Alpha-olefins applications handbook, Marcel Dekker, Berkeley, CA (1989).
  2. Breuil PAR, Magna L, Olivier-Bourbigou H, Catal. Lett., 145(1), 173 (2015)
  3. Yang Y, Liu Z, Liu B, Duchateau R, ACS Catal., 3, 2353 (2013)
  4. Wright WRH, Batsanov AS, Messinis AM, Howard JAK,Tooze RP, Hanton MJ, Dyer PW, J. Chem. Soc.-Dalton Trans., 41, 5502 (2012)
  5. Forestiere A, Olivier-Bourbigou H, Saussine L, Oil Gas Sci. Technol. -Rev. IFP, 64, 649 (2009)
  6. Mahdaviani SH, Parvari M, Soudbar D, Chem. Eng. Commun., 202, 1564 (2015)
  7. Mahdaviani SH, Soudbar D, Parvari M, in IAENG transactions on engineering technologies, Kim HK, Ao SI, Rieger BB, Eds., Springer, Dordrecht (2013).
  8. Grasset F, Cazaux JB, Magna L, Braunstein P, Olivier-Bourbigou H, J. Chem. Soc.-Dalton Trans., 41, 10396 (2012)
  9. Grasset F, Magna L, US Patent, 2011/0288308 A1 (2011).
  10. Mahdaviani SH, Soudbar D, Parvari M, Int. J. Chem. Eng. Appl., 1, 276 (2010)
  11. Cazaux JB, Braunstein P, Magna L, Saussine L, Olivier-Bourbigou H, Eur. J. Inorg. Chem., 2009, 2942 (2009)
  12. Ajellal N, Khan MCA, Boff ADG, Horner M, Thomas CM, Carpentier JF, Casagrande OL, Organometallics, 25, 1213 (2006)
  13. Speiser F, Braunstein P, Saussine L, Acc. Chem. Res., 38, 784 (2005)
  14. de Souza RF, Bernardo-Gusmao K, Cunha GA, Loup C, Leca F, Reau R, J. Catal., 226(1), 235 (2004)
  15. Al-Sadoun AW, Appl. Catal. A: Gen., 105, 1 (1993)
  16. Al-Jaralleh AM, Anabtawi JA, Siddiqui MAB, Aitani AM, Al-Sadoun AW, Catal. Today, 14, 1 (1992)
  17. Pillai SM, Tembe GL, Ravindranathan M, Sivaram S, Ind. Eng. Chem. Res., 27, 1971 (1988)
  18. Belov GP, Dyachkovskii FS, Smirnov VI, Pet. Chem. U.S.S.R., 18, 223 (1979)
  19. Bre A, Chauvin Y, Commereuc D, Nouv. J. Chim., 10, 535 (1986)
  20. Belov GP, Dzhabiev TS, Kolesnikov IM, J. Mol. Catal., 14, 105 (1982)
  21. Suttil JA, McGuinness DS, Organometallics, 31, 7004 (2012)
  22. Robinson R, McGuinness DS, Yates BF, ACS Catal., 3, 3006 (2013)
  23. Tang SY, Liu Z, Yan XW, Li N, Cheng RH, He XL, Liu BP, Appl. Catal. A: Gen., 481, 39 (2014)
  24. Chen HX, Liu XY, Hu WB, Ning YN, Jiang T, J. Mol. Catal. A-Chem., 270(1-2), 273 (2007)
  25. Yang Y, Kim H, Lee J, Paik H, Jang HG, Appl. Catal. A: Gen., 193(1-2), 29 (2000)
  26. Davies OL, Goldsmith PL, Statistical methods in research and production with special reference to the chemistry industry, Published for Imperial Chemical Industries Ltd., 4th Rev. Ed., Oliver and Boyd, Edinburgh (1972).
  27. Mason RL, Gunst RF, Hess JL, Statistical design and analysis of experiments: With applications to engineering and science, 2nd Ed., Wiley, New York (2003).
  28. Taguchi G, System of experimental design: Engineering methods to optimize quality and minimize costs, UNIPUB/Kraus International Publications, New York (1987).
  29. Ross PJ, Taguchi techniques for quality engineering, 2nd Ed., McGraw-Hill, New York (1996).
  30. Deng JL, J. Grey Syst., 1, 1 (1989)
  31. Wen KL, Chang TC, You XL, in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Diego, CA, 2, 1842 (1998).
  32. Phadke MS, Quality engineering using robust design, AT&T Bell Laboratories Report, Prentice-Hall International Editions, New Jersey (1989).
  33. Roy RK, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, Inc., New York (2001).
  34. Kucuk O, Korean J. Chem. Eng., 23(1), 21 (2006)
  35. Lu M, Wevers K, J. Grey Syst., 10, 47 (2007)
  36. Liu S, Lin Y, Grey information: Theory and practical applications (Advanced information and knowledge processing), Springer-Verlag, New York (2005).
  37. Yan J, Li L, J. Clean Prod., 52, 462 (2013)
  38. Kuram E, Ozcelik B, Measurement, 46, 1849 (2013)
  39. Padhee S, Pani S, Mahapatra SS, J. Manuf. Eng., 226, 176 (2012)
  40. Siriyala R, Alluru GK, Penmetsa RMR, Duraiselvam M, Front. Mech. Eng., 7, 279 (2012)
  41. Mondal S, Paul CP, Kukreja LM, Bandyopadhyay A, Pal PK, Int. J. Adv. Manuf. Technol., 54, 957 (2011)
  42. Acherjee B, Kuar AS, Mitra S, Misra D, Int. J. Adv. Manuf. Technol., 56, 995 (2011)
  43. Jung JH, Kwon WT, J. Mech. Sci. Technol., 24, 1083 (2010)
  44. Chen CC, Tsao CC, Lin YC, Hsu CY, Ceram. Int., 36, 979 (2010)
  45. Tzeng CJ, Lin YH, Yung YK, Jeng MC, J. Mater. Process. Technol., 209, 2753 (2009)
  46. Caydas U, Hascalik A, Opt. Laser Technol., 40, 987 (2008)
  47. Pan LK, Wang CC, Wei SL, Sher HF, J. Mater. Process. Technol., 182, 107 (2007)
  48. Kuo CFJ, Su TL, Tsai CP, Fiber Polym., 8, 654 (2007)
  49. Singh PN, Raghukandan K, Pai BC, J. Mater. Process. Technol., 155-156, 1558 (2004)
  50. Fung CP, Huang CH, Doong JL, J. Reinf. Plast. Compos., 22, 51 (2003)
  51. Kao PS, Hocheng H, J. Mater. Process. Technol., 140, 255 (2003)
  52. Tarng YS, Juang SC, Chang CH, J. Mater. Process. Technol., 128, 1 (2002)
  53. Lin JL, Lin CL, Int. J. Mach. Tools Manuf., 42, 237 (2002)
  54. Sharma A, Yadava V, Opt. Laser Technol., 44, 159 (2012)
  55. Jangra K, Grover S, Aggarwal A, Front. Mech. Eng., 7, 288 (2012)
  56. Kuo CFJ, Su TL, Jhang PR, Huang CY, Chiu CH, Energy, 36(5), 3554 (2011)
  57. Sharma A, Yadava V, Mater. Manuf. Process., 26, 1522 (2011)
  58. Singh GK, Yadava V, Kumar R, Int. J. Precis. Eng. Manuf., 11, 509 (2010)
  59. Chiang YM, Hsieh HH, Comput. Ind. Eng., 56, 648 (2009)
  60. Rao R, Yadava V, Opt. Laser Technol., 41, 922 (2009)
  61. Lindman HR, Analysis of variance in experimental design, Springer-Verlag, Berlin (1992).
  62. Chou CS, Ho CY, Huang CI, Adv. Powder Technol., 20(1), 55 (2009)
  63. Chou CS, Liu CL, Chaung WC, Mater. Des., 44, 172 (2013)
  64. Ramavandi B, Asgari G, Faradmal J, Sahebi S, Roshani B, Korean J. Chem. Eng., 31(12), 2207 (2014)
  65. Sahin Y, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 408, 1 (2005)
  66. Bardinet GMP, Keck REJ, US Patent, 3,752,834 (1973).
  67. Herman DF, US Patent, 2,654,770 (1953).
  68. Pandey AK, Dubey AK, Opt. Laser Eng., 50, 328 (2012)
  69. Srivastava VC, Mall ID, Mishra IM, Ind. Eng. Chem. Res., 46(17), 5697 (2007)
  70. Fisher RA, Statistical methods for research workers, Oliver and Boyd, London (1925).