Korean Journal of Chemical Engineering, Vol.33, No.2, 514-526, February, 2016
Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
E-mail:
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.
Keywords:Lithium-ion Battery;Cathode Material;LiNi0.8Co0.1Mn0.1O2;Co-precipitation;Electrochemical Properties
- Kraytsberg A, Ein-Eli Y, Adv. Energy Mater., 2, 922 (2012)
- Zaghib K, Mauger A, Groult H, Goodenough J, Julien C, Materials, 6, 1028 (2013)
- Ellis BL, Lee KT, Nazar LF, Chem. Mater., 3, 691 (2010)
- Liu F, Song S, Xue D, Zhang H, Nanoscale Res. Lett., 7, 149 (2012)
- Goodenough JB, Kim Y, Chem. Mater., 22, 587 (2010)
- Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783 (1980)
- Whittingham MS, Chem. Rev., 104(10), 4271 (2004)
- Ozawa K, Solid State Ion., 69(3-4), 212 (1994)
- Wang Z, Wang Z, Guo H, Peng W, Li X, Ceram. Int., 41, 469 (2015)
- Amatucci GG, Tarascon JM, Klein LC, Solid State Ion., 83(1-2), 167 (1996)
- Tarascon JM, Armand M, Nature, 414, 359 (2001)
- Julien CM, Mauger A, Zaghib K, Groult H, Inorganics, 2, 132 (2014)
- Kalyani P, Kalaiselvi N, Sci. Technol. Adv. Mater., 6, 689 (2005)
- Sun YK, Chen ZH, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K, Nat. Mater., 11(11), 942 (2012)
- Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K, Electrochem. Commun., 4, 620 (2002)
- Hwang BJ, Tsai YW, Carlier D, Ceder G, Chem. Mater., 15, 3676 (2003)
- Zhang S, Deng C, Fu BL, Yang SY, Ma L, Powder Technol., 198(3), 373 (2010)
- Saavedra-Arias JJ, Karan NK, Pradhan DK, Kumar A, Nieto S, Thomas R, Katiyar RS, J. Power Sources, 183(2), 761 (2008)
- Lu HQ, Zhou HT, Svensson AM, Fossdal A, Sheridan E, Lu SG, Vullum-Bruer F, Solid State Ion., 249, 105 (2013)
- Fey GTK, Chen JG, Wang ZF, Yang HZ, Kumar TP, Mater. Chem. Phys., 87(2-3), 246 (2004)
- Fey GTK, Subramanian V, Lu CZ, Solid State Ion., 152-153, 83 (2002)
- Fey GTK, Shiu RF, Subramanian V, Chen JG, Chen CL, J. Power Sources, 103(2), 265 (2002)
- Ling-jun LI, Xin-hai LI, Zhi-xing W, Ling W, Jun-chao Z, Jin-hui L, Trans. Nonferrous Met. Soc. China., 20, 279 (2010)
- Zhang Y, Cao H, Zhang J, Xia BJ, Solid State Ion., 177(37-38), 3303 (2006)
- Zhang B, Li L, Zheng J, J. Alloy. Compd., 520, 190 (2012)
- Li LJ, Li XH, Wang ZX, Guo HJ, Yue P, Chen W, Wu L, Powder Technol., 206(3), 353 (2011)
- Saavedra-Arias JJ, Rao CV, Shojan J, Manivannan A, Torres L, Ishikawa Y, Katiyar RS, J. Power Sources, 211, 12 (2012)
- Choo S, Kim HY, Yoon DY, Choi W, Oh SH, Ju JB, Ko JM, Jang H, Cho WI, Korean J. Chem. Eng., 31(5), 905 (2014)
- Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393 (2012)
- Belharouak I, Lu W, Vissers D, Amine K, Electrochem. Commun., 8, 329 (2006)
- Ying JR, Wan CR, Jiang CY, Li YX, J. Power Sources, 99(1-2), 78 (2001)
- Cheralathan KK, Kang NY, Park HS, Lee YJ, Choi WC, Ko YS, Park YK, J. Power Sources, 195(5), 1486 (2010)
- Lee MH, Kang Y, Myung ST, Sun YK, Electrochim. Acta, 50(4), 939 (2004)
- Zhang S, Deng C, Fu BL, Yang SY, Ma L, Powder Technol., 198(3), 373 (2010)
- Fu C, Li G, Luo D, Li Q, Fan J, Li L, ACS Appl. Mater. Interfaces, 6, 15822 (2014)
- Lin F, Markus IM, Doeff MM, Xin HL, Sci. Rep., 4, 5694 (2014)
- Luo D, Li GS, Fu CC, Zheng J, Fan JM, Li Q, Li LP, J. Power Sources, 276, 238 (2015)
- Son JT, Cairns E, Korean J. Chem. Eng., 24(5), 888 (2007)
- Sekizawa O, Hasegawa T, Kitamura N, Idemoto Y, J. Power Sources, 196(16), 6651 (2011)
- Eom J, Kim MG, Cho J, J. Electrochem. Soc., 155(3), A239 (2008)
- Bang H, Kim DH, Bae YC, Prakash J, Sun YK, J. Electrochem. Soc., 155(12), A952 (2008)
- Chen YP, Zhang Y, Chen BJ, Wang ZY, Lu C, J. Power Sources, 256, 20 (2014)
- Liu K, Yang GL, Dong Y, Shi T, Chen L, J. Power Sources, 281, 370 (2014)
- Zhao JQ, Aziz S, Wang Y, J. Power Sources, 247, 95 (2014)
- Lee KS, Myung ST, Amine K, Yashiro H, Sun YK, J. Electrochem. Soc., 154(10), A971 (2007)