Korean Chemical Engineering Research, Vol.54, No.1, 81-88, February, 2016
감귤 추출물로부터 D-리모넨 분리를 위한 유사 이동층 크로마토그래피(SMB) 전산모사
Simulation of D-limonene Separation from Mandarine Extract in Simulated Moving Bed (SMB)
E-mail:
초록
리모넨은 오렌지 향이 있는 천연의 키랄 화합물로 주로 감귤껍질과 레몬껍질에 함유되어 있다. 4 oC로 냉장 보관한 감귤 껍질을 에탄올을 용매로 속슬렛 추출기에서 2시간동안 120 oC에서 추출하였다. 역상 HPLC 분석을 통해 d-리모넨과 불순물의 헨리 상수를 계산하여 HLim=8.55, Himp=0.223를 얻었다. Aspen chromatography 프로그램을 사용해서 0.46×25 cm 칼럼으로 이루어진 4-bed SMB의 리모넨 전산모사를 수행하였고 삼각도내의 m2, m3 값을 변경하면서 순도가 가장 높은 분리 조건을 찾았다. 그 결과 가장 높은 순도는 98.59%이고, m2=2.57, m3=9.55였다. 이 때의 feed 유량은 1 mL/min, desorbent 유량은 1.19 mL/min, extract 유량은 0.857 mL/min, raffinate 유량은 1.34 mL/min이었다. Scale-up 전산모사를 위해 칼럼의 직경을 1.6 cm로 늘린 4-bed SMB에서 직경이 0.46 cm인 4-bed SMB와 같은 결과를 갖는 조건을 찾기 위해 유량을 칼럼 부피 비에 정비례하여 증가시켰다. 이 때 feed, desorbent, extract, raffinate의 유량은 각각 12 mL/min, 14 mL/min, 10 mL/min, 16 mL/min이었다. 리모넨과 불순물의 등온흡착곡선을 선형으로 가정하였기에 칼럼 부피에 정비례하여 유량을 증가시키는 scale-up이 가능하였다.
Limonene is orange flavored natural material that is mainly contained in mandarine and lemon peels. Dlimonene was extracted from cold-storaged mandarine peel by using Soxhlet extractor at 120 oC for 2 hours with ethanol as solvent. Henry constants of d-limonene and impurity were calculated as HLim=8.55 and Himp=0.223 from the result of HPLC analysis. 4-bed SMB of limonene simulation with 0.46×25 cm columns was conducted by using Aspen chromatography program. Then effective condition for purity was found by changing m2 and m3 values in triangle diagram. The highest purity was 98.59% at m2=2.57, m2=9.55. For this case, feed, desorbent, extract, and raffinate flow rates were 1 mL/min, 1.19 mL/min, 0.857 mL/min and 1.34 mL/min, respectively. Scale-up simulation was also conducted by increasing column diameter from 0.46 cm to 1.6 cm for getting the same efficiency. The increased flow rates were 12 mL/min, 14 mL/min, 10 mL/min, and 16 mL/min for feed, desorbent, extract, and raffinate. It was possible to scale-up with maintaining same limonene purity because linear isotherms of limonene and impurity were assumed.
- http://apps.fas.usda.gov/psdonline/circulars/citrus.pdf.
- Im HS, Yoon CH, Oh EH, J. Korean Oil Chemist’s Soc., 26(3), 350 (2009)
- Morse MA, Toburen AL, Cancer Letters, 104(2), 211 (1996)
- Lu HY, Shen Y, Sun X, Zhu H, Liu XJ, J. Science of Food and Agriculture, 93(12), 2917 (2013)
- Langer RS, Wise DL, “Medical Applications of Controlled Release,” CRC Press, Florida, U.S.A., 2, 2(2004).
- Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R, Biomaterials, 4, 131 (1983)
- Heuer C, Hugo P, Mann G, Seidel-Morgenstern A, J. Chromatogr. A, 752, 19 (1996)
- Storti G, Mazzotti M, Morbidelli M, Carra S, AIChE J., 39, 471 (1993)
- Juza M, J. Chromatogr. A, 865, 35 (1999)
- Won JH, Cho YS, Kim YD, Ahn DJ, Korean Chem. Eng. Res., 39(6), 685 (2001)
- Migliorini C, Mazzotti M, Morbidelli M, J. Chromatogr. A, 827, 161 (1998)
- Pedeferri M, Zenoni G, Mazzotti M, Morbidelli M, Chem. Eng. Sci., 54(17), 3735 (1999)
- Song SM, Kim IH, Korean Chem. Eng. Res., 49(6), 798 (2011)
- Guiochon G, Golshan-Shirazi S, Katti A, “Fundamentals of Preparative and Nonlinear Chromatography,” Academic Press, Massachusetts, U.S.A.(1994).
- Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245 (1997)
- Lee SH, Lee E, Kim IH, Biotechnol. Bioeng., 23(2), 135 (2008)
- Lee IS, Lee IS, Kim IH, Biotechnol. Bioeng., 29(4), 250 (2014)