화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.34, 89-97, February, 2016
Effect of perovskite-PbTiO3 as a buffer or scattering layer in DSSC performance
E-mail:
To enhance the current efficiency of dye-sensitized solar cells, a perovskite-PbTiO3 as a buffer or scattering supplement is introduced via a conventional hydrothermal treatment in this study. For comparison, five groups of multi-layered electrodes with different configurations are fabricated, TiO2/TiO2 (blocking layer/scattering layer), TiO2/PbTiO3 and TiO2/TiO2-PbTiO3/PbTiO3 (blocking layer/buffer layer/scattering layer), and the photoelectrochemical properties of these materials are identified by Xray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, impedance measurements (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) analysis. When a mixture of TiO2 and PbTiO3 is prepared as a buffer layer, the cell efficiency is improved remarkably. In particular, TiO2b/5TiO2b-5PbTiO3/PbTiO3-DSSC shows the highest cell performance of 8.39% with the smallest internal resistance. This result means that the improved electron recombination and transportation over the TiO2b/5TiO2b-5PbTiO3/PbTiO3-DSSC lead to higher efficiency. Based on the photoelectrochemical results, the perovskite-PbTiO3 can be concluded to be a valuable material to reduce the presence of defects at the interface and facilitate the movement of electrons for higher DSSC performance.
  1. O’Regan B, Gratzel M, Nature, 353, 737 (1991)
  2. Swetha T, Niveditha S, Bhanuprakash K, Singh SP, Electrochim. Acta, 153, 343 (2015)
  3. Singh LK, Karlo T, Pandey A, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 118, 938 (2014)
  4. Shinde DV, Lim I, Kim CS, Lee JK, Mane RS, Han SH, Chem. Phys. Lett., 542, 66 (2012)
  5. Sheikh AD, Bera A, Haque MA, Rakhi RB, Gobbo SD, Alshareef HN, Wua T, Sol. Energy Mater. Sol. Cells, 137, 6 (2015)
  6. Bora C, Sarkar C, Mohan KJ, Dolui S, Electrochim. Acta, 157, 225 (2015)
  7. Miao FJ, Tao BR, Chu PK, Electrochim. Acta, 96, 61 (2013)
  8. Afrooz M, Dehghani H, J. Power Sources, 262, 140 (2014)
  9. Prakash T, Navaneethan M, Archana J, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y, Mater. Lett., 82, 208 (2012)
  10. Dong R, Liu S, Li Z, Chen Z, Zhang H, Mater. Lett., 123, 135 (2014)
  11. Sauvage F, Chen D, Comte P, Huang F, Heiniger L, Cheng Y, Caruso RA, Gratzel M, ACS Nano, 4, 4420 (2010)
  12. Tathavadekar MC, Agarkar SA, Game OS, Bansode UP, Kulkarni SA, Mhaisalkar SG, Ogale SB, Sol. Energy, 112, 12 (2015)
  13. Nikfarjam A, Salehifar N, Sens. Actuators B-Chem., 211, 146 (2015)
  14. Lee JH, Ahn K, Kim SH, Kim JM, Jeong SY, Jin JS, Jeong ED, Cho CR, Curr. Appl. Phys., 14(6), 856 (2014)
  15. Lee JH, Ahn K, Kim SH, Kim JM, Jeong SY, Jin JS, Jeong ED, Cho CR, Curr. Appl. Phys., 14(6), 856 (2014)
  16. Pang H, Yang H, Guo CX, Lu J, Li CM, Chem. Commun., 48, 8832 (2012)
  17. Wang JT, Shi XL, Zhong XH, Wang JN, Pyrah L, Sanderson KD, Ramsey PM, Hirata M, Tsuri K, Sol. Energy Mater. Sol. Cells, 132, 578 (2015)
  18. Yang L, Leung WWF, Polyhedron, 82, 7 (2014)
  19. Mikroyannidis JA, Roy MS, Sharma GD, J. Power Sources, 195(16), 5391 (2010)
  20. Yang Y, Pillai S, Mehrvarz H, Kampwerth H, Ho-Baillie A, Green MA, Sol. Energy Mater. Sol. Cells, 101, 217 (2012)
  21. Guai GH, Song QL, Lu ZS, Ng CM, Li CM, Renew. Energy, 51, 29 (2013)
  22. Shishido T, Kudou K, Sasaki T, Okada S, Ye J, Iizumi K, Nomura A, Sugawara T, Obara K, Tanaka M, Kohiki S, Kawazoe Y, Nakajima K, Oku M, J. Alloy. Compd., 383, 294 (2004)
  23. Han H, Kim CS, Lee BW, J. Magn. Magn. Mater., 254-255, 574 (2003)
  24. Taniguchi S, Aniya M, Solid State Ion., 225, 747 (2012)
  25. Mahato DK, Dutta A, Sinha TP, Physica B, 406, 2703 (2011)
  26. Li Y, Sun H, Wang N, Fang W, Li Z, Solid State Sci., 37, 18 (2014)
  27. Kato Y, Mimura K, Umeda J, Sakamoto W, Yogo T, Colloids Surf. A: Physicochem. Eng. Asp., 408, 57 (2012)
  28. Lv HZ, Gao HW, Yang Y, Liu LK, Appl. Catal. A: Gen., 404(1-2), 54 (2011)
  29. Ravindiran M, Shankar P, Superlattices Microstruct., 75, 79 (2014)
  30. Tadmor EB, Waghmare UV, Smith GS, Kaxiras E, Acta Mater., 50, 2989 (2002)
  31. Zhao J, Xing W, Li Y, Lu K, Mater. Lett., 145, 332 (2015)
  32. Xing Z, Wang H, Xu B, Ma G, Huang Y, Kang J, Zhu L, Mater. Des., 62, 57 (2014)
  33. Zak AK, Abd Majid WH, Abrishami ME, Yousefi R, Parvizi R, Solid State Sci., 14, 488 (2012)
  34. Fu HB, Yao WQ, Zhang LW, Zhu YF, Mater. Res. Bull., 43(10), 2617 (2008)
  35. Dumbrava A, Prodan G, Moscalu F, Mater. Sci. Semicond. Process, 16, 1095 (2013)
  36. de Lazaro S, Longo E, Sambrano JR, Beltran A, Surf. Sci., 552, 149 (2004)
  37. Kwak BS, Im Y, Kang M, Inter. J. Photoenergy, 375746, 1 (2014)
  38. Reanprayoon C, Gasiorowski J, Sukwattanasinitt M, Sariciftci NS, Thamyongkit P, RSC Adv., 4, 3045 (2014)
  39. Kajari-Schroder S, Kunze I, Kontges M, Energy Procedia, 27, 658 (2012)
  40. Alparone A, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 81, 631 (2011)
  41. Kusumawardani C, Wahyuningsih SS, KACST, 23 (2011)
  42. Fang CC, J. Franklin Inst., 350, 3293 (2013)
  43. Mozaffari SA, Ranjbar M, Kouhestanian E, SalarAmoli H, Armanmehr MH, Mater. Sci. Semicond. Process, 40, 285 (2015)
  44. Saad SKM, Umar AA, Rahman MYA, Salleh MM, Appl. Surf. Sci., 353, 835 (2015)
  45. Pengchan W, Phetchakul T, Poyai A, J. Cryst. Growth, 362, 300 (2013)
  46. Jiang YX, Yang YL, Qiang LS, Fan RQ, Ning HP, Li L, Ye TL, Yang B, Cao WW, J. Power Sources, 278, 527 (2015)
  47. Arranz A, Diaz R, Solid State Ion., 266, 51 (2014)