화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.1, 74-79, February, 2016
축전식 탈염에서 전극반응에 의한 스케일 생성과 탈염성능에 미치는 영향
Scale Formation by Electrode Reactions in Capacitive Deionization and its Effects on Desalination Performance
E-mail:
초록
막결합 축전식 탈염(MCDI)의 운전과정에서 전극반응에 의한 경도물질의 스케일 생성이 탈염성능에 미치는 영향을 연구하였다. Ca2+ 이온을 함유한 유입수에 대해 흡착 및 탈착과정을 반복하면서 사이클에 따른 유출수의 농도와 셀전위의 변화를 분석하였다. 셀 전위가 약 0.8 V 이상에서 음극에서 수산화이온 생성반응이 시작되는 것을 알 수 있었다. 또한 전극반응으로 생성된 OH- 이온이 흡착된 Ca2+ 이온과 결합하여 음극 탄소전극 표면에서 Ca(OH)2 스케일이 생성되었다. 스케일이 생성되면서 탄소전극의 전기저항이 증가하여 흡착량은 크게 감소하였다. 셀 전위를 1.5 V에서 운전한 경우 스케일의 영향으로 흡착량은 초기 흡착량의 58%까지 감소하였다.
The effects of scale formation of hardness material caused by electrode reactions on the desalination performance of the membrane capacitive deionization (MCDI) were investigated. During the repeated adsorption and desorption process for the influent containing Ca2+ ion, changes in effluent concentration and cell potential with respect to the number of adsorption were analyzed. It was found that OH- generation at the cathode was initiated at about 0.8 V or more of cell potential. In addition, the scale of Ca(OH)2 was formed on the surface of cathode carbon electrode by combining adsorbed Ca2+ ions and OH- ions generated from electrode reaction. As the scale was forming, the electrical resistance of carbon electrode was increasing, which resulted in the decrease of the adsorption amount. In the case of the operation at 1.5 V cell potential, the adsorption was reduced to 58% of the initial adsorption amount due to the scale formation.
  1. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388 (2013)
  2. Oren Y, Desalination, 228(1-3), 10 (2008)
  3. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
  4. Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
  5. Kim YJ, Choi JH, Sep. Purif. Technol., 71(1), 70 (2010)
  6. Zou L, Li L, Song H, Morris G, Water Res., 42, 2340 (2008)
  7. Seo SJ, Jeon H, Lee JK, Kim GY, Park D, Nojima H, Lee J, Moon SH, Water Res., 44, 2267 (2010)
  8. Biesheuvel PM, van der Wal A, J. Membr. Sci., 346(2), 256 (2010)
  9. Murphy GW, Caudle DD, Electrochim. Acta, 12, 1655 (1967)
  10. Andelman M, Charge barrier flow-through capacitor, CA Patent 2,444,390 (2002).
  11. Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
  12. Tsouris C, Mayes R, Kiggans J, Sharma K, Yiacoumi S, DePaoli D, Dai S, Environ. Sci. Technol., 45, 10243 (2011)
  13. Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z, Water Res., 42, 4923 (2008)
  14. Gabelich CJ, Tran TD, Suffet IH, Environ. Sci. Technol., 36, 3010 (2002)
  15. Li HB, Zou L, Pan LK, Sun Z, Sep. Purif. Technol., 75(1), 8 (2010)
  16. Chung S, Lee JK, Ocon JD, Son Y, Lee J, Appl. Chem. Eng., 25(4), 346 (2014)
  17. Choi JH, Desalination, 347, 224 (2014)
  18. Kim YJ, Choi JH, Water Res., 44, 990 (2010)
  19. Kim YJ, Choi JH, Appl. Chem. Eng., 21(1), 87 (2010)
  20. Zhao R, Biesheuvel PM, van der Wal A, Energy Environ. Sci., 5, 9520 (2012)
  21. Harris DC, Quantitative Chemical Analysis, 5th ed., W.H. Freemann and Company, NY, USA (1998).
  22. Conway BE, Electrochemical Supercapacitor: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, NY, USA (1999).
  23. Strathmann H, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, The Netherland (2004).