Korean Journal of Materials Research, Vol.25, No.12, 672-677, December, 2015
염료감응형 태양전지의 비백금 상대전극을 위한 Co가 내재된 Graphitic 다공성 탄소나노섬유
Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
E-mail:
Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, 12.88 mA/cm2) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs(12.00 mA/cm2, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.
Keywords:dye-sensitized solar cells;counter electrode;Pt-free;graphitic porous carbon nanofibers;catalytic properties
- Gratzel M, Nature, 414, 338 (2001)
- Lin JY, Liao JH, Wei TC, Electrochem. Solid State Lett., 14(4), D41 (2011)
- Sebastian D, Baglio V, Girolamo M, Moliner R, Lazaro MJ, Arico AS, J. Power Sources, 250, 242 (2014)
- Battumur T, Mujawar SH, Truong QT, Ambade SB, Lee DS, Lee WJ, Han SH, Lee SH, Curr. Appl. Phys., 12, e49 (2012)
- Shin HJ, Jeon SS, Im SS, Synth. Met., 161, 1284 (2011)
- Yoon SB, Chai GS, Kang SK, Yu JS, Gierszal KP, Jaroniec M, J. Am. Chem. Soc., 127(12), 4188 (2005)
- Patel MN, Wang X, Slanac DA, Ferrer DA, Dai S, Johnston KP, Stevenson KJ, J. Mater. Chem., 22, 3160 (2012)
- Krivoruchko OP, Maksimova NI, Zaikovskii VI, Salanov AN, Carbon, 38, 1075 (2000)
- Sevilla M, Fuertes AB, Carbon, 44, 468 (2006)
- An HL, An GH, Ahn HJ, J. Alloy. Compd., 645, 317 (2015)
- Lee YJ, Koo BR, Ahn HJ, J. Korean Powder Metall. Inst., 21, 360 (2014)
- Joh HJ, Song HK, Yi KB, Lee SH, Carbon, 53, 399 (2013)
- Aykut Y, ACS Appl. Mater. Interfaces, 4, 3405 (2012)
- Xiao YM, Han GY, Zhou HH, Li YP, Lin JY, Electrochim. Acta, 155, 103 (2015)
- Li PJ, Wu JH, Lin JM, Huang ML, Huang YF, Li QG, Sol. Energy, 83(6), 845 (2009)
- Gong F, Wang H, Xu X, Zhou G, Wang ZS, J. Am. Chem. Soc., 134(26), 10953 (2012)
- Gong J, Liang J, Sumathy K, Renew. Sust. Energ. Rev., 16, 5848 (2012)
- Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
- Wu JH, Li QH, Fan LQ, Lan Z, Li PJ, Lin JM, Hao SC, J. Power Sources, 181(1), 172 (2008)
- An HR, Ahn HJ, Korean J. Mater. Res., 24(10), 565 (2014)