화학공학소재연구정보센터
Journal of Chemical Thermodynamics, Vol.92, 182-190, 2016
Understanding thermodynamics of drug partitioning in micelles and delivery to proteins: Studies with naproxen, diclofenac sodium, tetradecyltrimethylammonium bromide, and bovine serum albumin
The use of surfactants in drug delivery has offered several advantages. Quantitative knowledge of the interactions of drugs with micellar systems is essential for deriving guidelines to design efficient drug delivery systems. In this work we have quantitatively addressed the mechanism of interaction of naproxen and diclofenac sodium with the micelles and monomers of tetradecyltrimethylammonium bromide (TTAB) based on thermodynamic studies by using isothermal titration calorimetry. The mechanism of interaction of the drugs with TTAB is based on identification of the nature of interactions of the former with the surfactant micelles and monomers. The values of partitioning constant (which is same as equilibrium constant for the reaction of drugs with the surfactant micelles), enthalpy, entropy and stoichiometry of partitioning have been determined and discussed in terms of possible intermolecular interactions. Further, the interaction of the drug naproxen with bovine serum albumin, when delivered from the micellar media has also been addressed in terms of binding constant, enthalpy and entropy of binding. The results are important in developing improved strategies for effective drug delivery systems. (C) 2015 Elsevier Ltd. All rights reserved.