Applied Biochemistry and Biotechnology, Vol.176, No.4, 1174-1194, 2015
Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC-ESI-MS/MS
Cell wall proteins (CWPs) are a prime site for signal perception and defense responses to environmental stresses. To gain further insights into CWPs and their molecular function, traditional techniques (e.g., two-dimensional gel electrophoresis) may be ineffective for special proteins. Elsholtzia splendens is a copper-tolerant plant species that grow on copper deposits. In this study, a fourplex isobaric tag was used for relative and absolute quantitation with liquid chromatography-tandem mass spectrometry approach to analyze the root CWPs of E. splendens. A total of 479 unique proteins were identified, including 121 novel proteins. Approximately 80.79 % of the proteins were extracted in the CaCl2 fraction, 16.08 % were detected in the NaCl fraction, and 3.13 % were identified in both fractions. The identified proteins have been involved in various processes, including cell wall remodeling, signal transduction, defense, and carbohydrate metabolism, thereby indicating a complex regulatory network in the apoplast of E. splendens roots. This study presents the first large-scale analysis of CWPs in metal-tolerant plants, which may be of paramount importance to understand the molecular functions and metabolic pathways in the root cell wall of copper-tolerant plants.