화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.99, No.13, 5647-5656, 2015
Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation
The microbial communities in the pig gut perform a variety of beneficial functions. Along with host genetics and diet, farm management practices are an important aspect of agricultural animal production that could influence gut microbial diversity. In this study, we used barcoded pyrosequencing of the V1-V3 regions of the 16S ribosomal RNA (rRNA) genes to characterise the faecal microbiome of three common commercial purebred pig lines (Duroc, Landrace and Yorkshire) before and after cohabitation. The diversity of faecal microbiota was characterised by employing phylogenetic, distance-based and multivariate-clustering approaches. Bacterial diversity tended to become more uniform after mixing of the litters. Age-related shifts were also observed at various taxonomic levels, with an increase in the proportion of the phylum Firmicutes and a decrease in Bacteroidetes over time, regardless of the purebred group. Cohabitation had a detectable effect on the microbial shift among purebred pigs. We identified the bacterial genus Parasutterella as having utility in discriminating pigs according to time. Similarly, Dialister and Bacteroides can be used to differentiate the purebred lines used. The microbial communities of the three purebred pigs became more similar after cohabitation, but retained a certain degree of breed specificity, with the microbiota of Landrace and Yorkshire remaining distinct from that of their distant relative, Duroc.