화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.99, No.18, 7805-7812, 2015
Metabolic engineering of Escherichia coli for production of biodiesel from fatty alcohols and acetyl-CoA
Microbial production of biodiesel from renewable feedstock has attracted intensive attention. Biodiesel is known to be produced from short-chain alcohols and fatty acyl-CoAs through the expression of wax ester synthase/fatty acyl-CoA: diacylglycerol acyltransferase that catalyzes the esterification of short-chain alcohols and fatty acyl-CoAs. Here, we engineered Escherichia coli to produce various fatty alcohol acetate esters, which depend on the expression of Saccharomyces cerevisiae alcohol acetyltransferase ATF1 that catalyzes the esterification of fatty alcohols and acetyl-CoA. The fatty acid biosynthetic pathways generate fatty acyl-ACPs, fatty acyl-CoAs, or fatty acids, which can be converted to fatty alcohols by fatty acyl-CoA reductase, fatty acyl-ACP reductase, or carboxylic acid reductase, respectively. This study showed the biosynthesis of biodiesel from three fatty acid biosynthetic pathway intermediates.