화학공학소재연구정보센터
Applied Surface Science, Vol.341, 55-60, 2015
Facile synthesis of TiO2/trititanate heterostructure with enhanced photoelectric efficiency for an improved photocatalysis
TiO2/trititanate photocatalyst was prepared by alkaline hydrothermal treatment of TiO2, and characterized by transmission electron microscopy, X-ray diffraction, and Raman etc. The photocatalytic activitiesof catalysts were evaluated by the photocatalytic degradation of rhodamine B (RhB). It is found that the heterostructure can be directly formed via the conversion of surface TiO2 into trititanate. The coupled nanostructure possesses enhanced adsorption ability for RhB as compared with the raw TiO2, owing to the formation of an increased amount of hydroxyl groups on the prepared catalyst surface. Besides, the generated trititanate can successfully introduce a shallow energy level in the coupled composite, which results in the improvement of separation efficiency of photoinduced electron-hole pairs. In the degradation experiments, TiO2/trititanate exhibits much higher photocatalytic activity than the bare TiO2. These advantages of the coupled nanostructure in adsorption capacity and photoelectric efficiency may make it a wider application for the removal of organic pollutants. (C) 2015 Elsevier B.V. All rights reserved.