화학공학소재연구정보센터
Applied Surface Science, Vol.341, 185-189, 2015
Core-shell nanospheres Pt@SiO2 for catalytic hydrogen production
Ultrafine platinum nanoparticles (NPs) embedded in silica nanospheres (Pt@SiO2) have been synthesized in a NP-5/cyclohexane reversed-micelle system followed by NaBH4 reduction. The as-synthesized core-shell nanocatalysts Pt@SiO2 were characterized by scanning electron microscopy, transmission electron microscopes, X-ray powder diffraction analysis, energy dispersive X-ray spectrometer and nitrogen adsorption-desorption investigations. Interestingly, the as-synthesized core-shell nanocatalysts Pt@SiO2 showed an excellent catalytic performance in hydrogen generation from the hydrolysis of ammonia borane (BH3NH3, AB) at room temperature. Especially, the catalytic performance of the Pt@SiO2 remained almost unchanged after the five recycles and even after the heat treatment (673 K), because the silica shells inhibit aggregation or deformation of the metal cores. Besides, the kinetic studies showed that the catalytic hydrolysis of AB was first order with respect to the catalyst concentration and zero order with respect to the substrate concentration, respectively. The excellent catalytic activity and stability of Pt@SiO2 can make it have a bright future in the practical application. (C) 2015 Elsevier B.V. All rights reserved.