화학공학소재연구정보센터
Applied Surface Science, Vol.342, 92-100, 2015
Role of surface functionality on the formation of raspberry-like polymer/silica composite particles: Weak acid-base interaction and steric effect
The surface functionality of polymer microspheres is the crucial factor to determine the nucleation and growth of silica particles and to construct the organic/inorganic hierarchical structures. The objective of this work was to evaluate the surface functionality and hierarchical morphology relationship via in situ sol-gel reaction. Carboxylic-functionalized poly (styrene-co-maleic anhydride) [P(S-co-MA)], poly(ethylene glycol)-functionalized poly(styrene-co-poly(ethylene glycol) methacrylate) [P(S-co-PEGMA)], and hybrid functionalized poly(styrene-co-maleic anhydride-co-poly(ethylene glycol) methacrylate) [P(S-co-MA-co-PEGMA)] microspheres were synthesized by emulsifier-free polymerization and used as templates. The morphologies of the composite particles were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results showed that core-shell structure was obtained with P(S-co-MA) as templates; raspberry-like structure was observed by using P(S-co-MA-co-PEGMA) as templates; and no silica particles were attached onto the surface of P(S-co-PEGMA) microspheres. These results indicated that the carboxylic groups on the surface formed by hydrolysis of anhydride groups were the determinate factor to control the nucleation of silica nanoparticles, and the PEG chains on the surface can affect the growth of silica particles. In addition, the particulate films were constructed by assembling these composite particles on glass substrates and modified with dodecyltrichlorosilane, the contact angles of water on the dual-sized structured surface were up to 160 degrees. (C) 2015 Elsevier B.V. All rights reserved.