화학공학소재연구정보센터
Applied Surface Science, Vol.364, 718-725, 2016
Controllable resistive switching in Au/Nb:SrTiO3 microscopic Schottky junctions
The reversible resistive switching effect at oxide interface shows promising applications in information storage and artificial intelligence. However, the microscopic switching mechanism is still elusive due to the difficulty of direct observation of the electrical and chemical behavior at the buried interface, which becomes a major barrier to design reliable, scalable, and reproducible devices. Here we used a gold-coated AFM tip as a removable electrode to investigate the resistive switching effect in a microscopic Au/Nb:SrTiO3 Schottky junction. We found that unlike the inhomogeneous random resistive switching in the macroscopic Schottky junctions, the high and low resistance states can be reversibly switched in a controllable way on the Nb-doped SrTiO3 surface by the conductive tip. The switching between the high and low resistance states in vacuum is accompanied by the reversible shift of the surface Fermi level. We indicate that the transfer of the interface oxygen ion in a double-well potential is responsible for the resistive switching in both macroscopic and microscopic Schottky junctions. Our findings provide a guide to optimize the key performance parameters of a resistive switching device such as operation voltage, switching speed, on/off ratio, and state retention time by proper electrode selection and fabrication strategy. (C) 2016 Elsevier B.V. All rights reserved.