Applied Surface Science, Vol.353, 924-932, 2015
The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution
The inhibitive mechanism of NO2- and MoO42- on the initiation and propagation of pitting corrosion for mild steel in chloride solution was studied with electrochemical methods and X-ray photoelectron spectroscopy (XPS). In 0.1 M NaCl solution both the addition of 0.2 M NaNO2 and 0.2 M Na2MoO4 effectively promoted passivation of mild steel. The passive film on the steel surface formed in NaCl + NO2- solution was composed of mainly gamma-Fe2O3, and the film formed in NaCl + MoO42- solution was composed of two components: one is Fe-2(MoO4)(3) and the other is an oxide composed of Fe and O. The film formed in NaNO2 solution has lower oxygen vacancies and larger impedance than the film formed in Na2MoO4 solution. NO2- shows better inhibition to the initiation of pitting corrosion than MoO42-, which is attributed to its strong oxidability that results in the formation of a stable gamma-Fe2O3 film. However, in NaNO2 solution, once a pit forms, it is more difficult to get repassivated than the situation in Na2MoO4 solution. The main reason is due to that in a propagating pit MoO42- anions result in increased solution pH value, but conversely NO2- anions lead to a decreased solution pH value within a pit. (C) 2015 Elsevier B.V. All rights reserved.