Applied Surface Science, Vol.353, 1223-1233, 2015
Mechanical and wet tribological properties of carbon fabric/phenolic composites with different weave filaments counts
Carbon fabric/phenolic composites with different weave filaments counts were prepared by dip-coating and hot-press techniques, and then their mechanical and wet tribological properties were investigated based on the analysis of the three-dimensional surface profiles and the pore structures. Results show that the mechanical properties (elastic modulus, flexural modulus, tensile modulus, flexural strength and tensile strength) of the 3K carbon fabric/phenolic composites (Composite A) are better than that of the 12K carbon fabric/phenolic composites (Composite B). Fractured surfaces observation suggests that the dominant tensile failure mechanism is fiber breakage for Composite A and matrix fracture for Composite B. Compared with Composite B, Composite A possesses high friction coefficient in different loads and at different sliding speeds, and the friction coefficient of Composite A is more sensitive to load and sliding speed. The wear rate of Composite B is 39% greater than that of Composite A and the wear features of worn surfaces demonstrate the excellent wear resistance for Composite A. Based on the observation of worn surface, the wear mechanisms are presented. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:Carbon fabric/phenolic composites;Mechanical and wet tribological properties;Weave structures;Tensile failure mechanisms;Wear mechanisms