화학공학소재연구정보센터
Applied Surface Science, Vol.357, 1776-1784, 2015
Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium
This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO3. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si4+ and Zn2+ were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn2+ and Si4+). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications. (C) 2015 Elsevier B.V. All rights reserved.