화학공학소재연구정보센터
Automatica, Vol.55, 183-196, 2015
Symbolic models for stochastic switched systems: A discretization and a discretization-free approach
Stochastic switched systems are a relevant class of stochastic hybrid systems with probabilistic evolution over a continuous domain and control-dependent discrete dynamics over a finite set of modes. In the past few years several different techniques have been developed to assist in the stability analysis of stochastic switched systems. However, more complex and challenging objectives related to the verification of and the controller synthesis for logic specifications have not been formally investigated for this class of systems as of yet. With logic specifications we meamproperties expressed as formulae in linear temporal logic or as automata on infinite strings. This paper addresses these complex objectives by constructively deriving approximately equivalent (bisimilar) symbolic models of stochastic switched systems. More precisely, this paper provides two different symbolic abstraction techniques: one requires state space discretization, but the other one does not require any space discretization which can be potentially more efficient than the first one when dealing with higher dimensional stochastic switched systems. Both techniques provide finite symbolic models that are approximately bisimilar to stochastic switched systems under some stability assumptions on the concrete model. This allows formally synthesizing controllers (switching signals) that are valid for the concrete system over the finite symbolic model, by means of mature automata-theoretic techniques in the literature. The effectiveness of the results are illustrated by synthesizing switching signals enforcing logic specifications for two case studies including temperature control of a six-room building. (C) 2015 Elsevier Ltd. All rights reserved.