Automatica, Vol.62, 184-192, 2015
Local optimization of dynamic programs with guaranteed satisfaction of path constraints
An algorithm is proposed for locating a feasible point satisfying the KKT conditions to a specified tolerance of feasible inequality-path-constrained dynamic programs (PCDP) within a finite number of iterations. The algorithm is based on iteratively approximating the PCDP by restricting the right-hand side of the path constraints and enforcing the path constraints at finitely many time points. The main contribution of this article is an adaptation of the semi-infinite program (SIP) algorithm proposed in Mitsos (2011) to PCDP. It is proved that the algorithm terminates finitely with a guaranteed feasible point which satisfies the first-order KKT conditions of the PCDP to a specified tolerance. The main assumptions are: (i) availability of a nonlinear program (NLP) local solver that generates a KKT point of the constructed approximation to PCDP at each iteration if this problem is indeed feasible; (ii) existence of a Slater point of the PCDP that also satisfies the first-order KKT conditions of the PCDP to a specified tolerance; (iii) all KKT multipliers are nonnegative and uniformly bounded with respect to all iterations. The performance of the algorithm is analyzed through two numerical case studies. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Dynamic optimization;Path constraints;Semi-infinite programs;Optimization with dynamics embedded;Optimal control