Biomass & Bioenergy, Vol.81, 544-555, 2015
Modeling and parameters fitting of chemical and phase equilibria in reactive systems for biodiesel production
Biodiesel, a non-toxic biodegradable fuel from renewable sources such as vegetable oils, has been developed in order to reduce dependence on crude oil and enable sustainable development. The knowledge of phase equilibrium in systems containing compounds for biodiesel production is valuable, especially in the purification stage of the biodiesel. Nonetheless, the refining process of biodiesel and byproducts can be difficult and can elevate the production costs considerably unless it has an appropriate knowledge about the phase separation behavior. In addition, the transesterification reaction yield for producing biodiesel depends upon several operation parameters e.g. the feed molar ratio oil-to-alcohol and the temperature. These parameters were analyzed through a thermodynamic analysis by direct Gibbs energy minimization method in this paper, with the purpose of calculating the chemical and phase equilibrium of some mixtures containing compounds found in biodiesel production. For this, optimization techniques associated with the GAMS 2.5 software were utilized and the UNIQUAC and NRTL models were applied to represent the non-idealities of the liquid phases. Also, binary interaction parameters of studied compounds were correlated for NRTL and UNIQUAC models by using the least squares principle. The results showed that the use of optimization techniques associated with the GAMS software are useful and efficient tools to calculate the chemical and phase equilibrium by minimizing the Gibbs energy. Moreover, a good agreement was observed in cases in which calculated data were compared with experimental data. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Biodiesel;Optimization;Gibbs energy minimization;Chemical and phase equilibrium;Non-linear programming