화학공학소재연구정보센터
Biotechnology Letters, Vol.37, No.3, 499-509, 2015
Prolonging life in chick forebrain-neuron culture and acquiring spontaneous spiking activity on a microelectrode array
Various types of animal neurons were cultured on a microelectrode array (MEA) platform to form biosensors to detect potential environmental neurotoxins. For a large-scale screening tool, rodent MEA-based cortical-neuron biosensors would be very costly but chick forebrain neurons (FBNs) are abundant, cost-effective, and easy to dissect. However, chick FBNs have a lifespan of similar to 14 days in vitro and their spontaneous spike activity (SSA) has been difficult to develop and detect. We used a high-density neuron-glia co-culture on an MEA to prolong chick FBN lifetime to 3 months with lifetime-long SSA. A remarkable embryonic age-dependency in the culture's morphology, lifespan, and most features of SSA signal was discovered. Our results show the feasibility of developing a chick FBN-MEA biosensor and also establish a new electrophysiological platform for functional study of an in vitro neuronal network.