화학공학소재연구정보센터
Journal of Materials Science, Vol.29, No.12, 3342-3350, 1994
Modeling of Continuous Recrystallization in Aluminum-Alloys
Microstructure and microtexture analyses have been made of three aluminium alloys after annealing alone and after concurrent straining and annealing, and simulative models of microstructure/microtexture evolution processes have been formulated. Both experimental and modelling results are presented as boundary misorientation distributions. For each alloy, the results show that annealing alone does not significantly alter the boundary misorientation distribution, while concurrent straining and annealing (up to a strain of 0.5) decreases the fraction of low-angle boundaries. To understand the mechanisms by which concurrent straining and annealing alter the boundary misorientation distribution, three simulative models of microstructure/microtexture evolution during concurrent straining and annealing have been formulated. Application of the models to experimentally determined initial microstructure/microtexture states shows that the boundary sliding (sub)grain rotation model decreases the fraction of low-angle boundaries, the dislocation glide (sub)grain rotation model increases the fraction of low-angle boundaries, and the (sub)grain neighbour switching model has a modest effect on the boundary misorientation distribution. A combination of the boundary sliding (sub)grain rotation model and the (sub)grain neighbour switching model most closely reproduces the boundary misorientation distributions found experimentally.