화학공학소재연구정보센터
Chemical Physics Letters, Vol.643, 142-148, 2016
Solvent exchange in liquid methanol and rate theory
To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for methanol exchange. The essential features of the dynamics as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find that the response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (<0.1 ps) and long time response (>5 ps). An effective characterization of the process is obtained from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory, resulting in improved numerical convergence of correlation functions. (C) 2015 Elsevier B.V. All rights reserved.