화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.3, 249-260, March, 2016
Phenylethynylene-substituted poly(triphenylamine vinylene): Post-modification synthesis and (spectro)electrochemical properties
E-mail:
Phenylethynylene-substituted poly(triphenylamine vinylene) were synthesised in two steps by Wittig polycondensation reaction between 4,4'-diformyl-triphenylamine and bis(4-formyl phenyl)-N,N'-iodo-phenylamine in the presence of a phosphonium salt. The iodine-substituted poly(triphenylamine vinylene) were subsequently subjected to coupling reactions with phenylacetylene obtaining conjugated new structures and properties. The structures were confirmed by C13 and 1H nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The attachment of phenylethynyl substituent to the backbone of the polymers influences the optical and electrochemical properties which were analysed by ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. Having triphenylamine units along the backbone, the obtained polymers exhibit electrochemical activity and their redox characteristics were investigated by running cyclic voltammetry for polymer films deposited on working electrode surface. The electrochemical data were used to estimate their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and the band gap energy values (Eg). The polymers films change their colour while the potential is swept on the positive anodic domain, and this may be due to various oxidation states that undergo the polymers. The in situ UV-Vis vs. applied potential spectra were also recorded.
  1. Minaev, Baryshnikov G, Agren H, Phys. Chem. Chem. Phys., 16, 1719 (2014)
  2. Mondragon M, Balderas JU, Jimenez LG, Sanchez-Espindola ME, Falcony C, Org. Electron., 15, 2993 (2014)
  3. Hales JM, Barlow S, Kim H, Mukhopadhyay S, Bredas JL, Perry JW, Marder SR, Chem. Mater., 26, 549 (2014)
  4. Murray MM, Holmes AB, Semiconducting Polymers: Chemistry, Physics and Engineering, Hadziinoannou G, van Hutten PF, Eds., Wiley, VCH Weiheim, 2000.
  5. Yook SK, Lee YY, Synth. Met., 162, 1594 (2012)
  6. Mikroyannidis JA, Stylianakis MM, Suresh P, Sharma GD, Sol. Energy Mater. Sol. Cells, 93(10), 1792 (2009)
  7. Kwak J, Bae WK, Zorn M, Woo H, Yoon H, Lim J, Kang SW, Weber S, Butt HJ, Zentel R, Lee S, Char K, Lee C, Adv. Mater., 21(48), 5022 (2009)
  8. Behl M, Hattemer E, Brehmer M, Zentel R, Macromol. Chem. Phys., 203, 503 (2002)
  9. Kim BS, Yoo SH, Dongkenn O, Wook CS, Soo CD, Lee CE, Yin YI, Synth. Met., 145, 229 (2004)
  10. Snaith HJ, Whiting GL, Sun B, Greenham NC, Huck WTS, Friend RH, Nano Lett., 5, 1653 (2005)
  11. Shirota YJ, Mater. Chem., 15, 75 (2005)
  12. Sommer M, Lindner SM, Thelakkat M, Adv. Funct. Mater., 17(9), 1493 (2007)
  13. Law KY, Chem. Rev., 93, 449 (1993)
  14. Baughman RH, Bredas JL, Chance RR, Elsenbaumer RL, Shacklette LW, Chem. Rev., 82, 209 (1982)
  15. Yamamoto T, Takagi M, Kizu K, Maruyama T, Kubota K, Kanbara H, Kurihara T, Kaino T, J. Chem. Soc.-Chem. Commun., 9, 797 (1993)
  16. Davey AP, Elliott S, Oconnor O, Blau W, J. Chem. Soc.-Chem. Commun., 14, 1433 (1995)
  17. Palai AK, Mishra SP, Kumar A, Srivastava R, Kamalasanan MN, Patri M, J. Polym. Sci. A: Polym. Chem., 49(4), 832 (2011)
  18. Ivan T, Vacareanu L, Grigoras M, Int. J. Polym. Mater., 62, 270 (2013)
  19. Kim YH, Park JC, Kang HJ, Park JW, Kim HS, Kim JH, Kwon SK, Macromol. Res., 13(5), 403 (2005)
  20. Vacareanu L, Teofilia I, Grigoras M, Macromol. Res., 21(10), 1059 (2013)
  21. Strohriegl P, Grazulevicius JV, Adv. Mater., 14(20), 1439 (2002)
  22. Ego C, Grimsdale AC, Uckert F, Yu G, Srdanov G, Mullen K, Adv. Mater., 14(11), 809 (2002)
  23. Wu FI, Shih PI, Shu CF, Tung YL, Chi Y, Macromolecules, 38(22), 9028 (2005)
  24. Liang F, Pu YJ, Kurata T, Kido J, Nishide H, Polymer, 46(11), 3767 (2005)
  25. Grigoras M, Stafie L, Des. Monomers Polym., 12, 177 (2009)
  26. Xia Z, He J, Peng P, Zhou Y, Li Y, Tian W, Tetrahedron Lett., 48, 5877 (2007)
  27. Jeong HL, Jiwon S, Hwang J, Park SY, Haeyoung C, Myoungsik C, Chem. Mater., 16, 456 (2004)
  28. Lai G, Bu RX, Santos J, Mintz EA, Synlett, 1997, 1275 (1997)
  29. Haijian X, Jiating H, Bin X, Shanpeng W, Yaowen L, Wenjing T, Tetrahedron, 64, 5736 (2008)
  30. Vacareanu L, Grigoras M, J. Appl. Electrochem., 40, 1969 (2010)
  31. Mallegol T, Gmouth S, Meziane AA, Blanchard D, Mongin O, Synthesis, 11, 1771 (2005)
  32. Ivan T, Vacareanu L, Grigoras M, Des. Monomers Polym., 17, 156 (2013)
  33. Wang YJ, Sheu HS, Lai Ck, Tetrahedron, 63, 1695 (2007)
  34. Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger A, Synth. Met., 99, 243 (1999)
  35. Tan ZA, Zhou E, Yang Y, He Y, Yang C, Li Y, Eur. Polym. J., 43, 855 (2007)
  36. Lana-Villarreal T, Campin JM, Guijarro N, Gomez R, Phys. Chem. Chem. Phys., 13, 4013 (2011)
  37. Yurchenko O, Freytag D, Borg LZ, Zentel R, Heinze J, Ludwigs S, J. Phys. Chem. B, 116(1), 30 (2012)
  38. Ambrose JF, Carpenter LL, Nelson RF, J. Electrochem. Soc., 122, 876 (1975)