화학공학소재연구정보센터
Combustion and Flame, Vol.162, No.3, 727-735, 2015
Preferential transport effects in premixed bluff-body stabilized CH4/H-2 flames
Recent studies of bluff-body stabilized premixed CH4/air flames, using line-imaged Raman/Rayleigh/LIF methods to measure temperature and major species, have revealed significant effects of preferential species transport on scalar structure across the flame and into the recirculation zone. The main observations were that the C/H atom ratio and the equivalence ratio increased going from reactants to products along a radial profile when the reactant flow velocity was sufficiently high to push the flame close to the boundary of the recirculation zone. This phenomenon was attributed to preferential diffusion of H-2 and H2O toward the reactants followed by convective transport of the hydrogen-species enriched fluid downstream and beyond the recirculation zone, leaving elevated levels of CO2 and the C/H and C/O atom ratios within the recirculation zone. The present work continues the investigation of this preferential transport phenomenon by considering lean premixed methane flames, with varying levels of H-2 addition, stabilized on the same bluff body burner as in the previous study. Results show similar effects of preferential transport as in the methane flames, with the measured equivalence ratio within the recirculation zone higher than in the reactant stream. However, with increasing levels of H-2 addition in the fuel, H-2 diffuses from reactants toward products rather than the other way around. For the highest level of H-2 addition (40% mole fraction) the C/H atom ratio in the products decreases relative to that in the reactants, while the C/O atom ratio still increases. This indicates that there is still preferential transport of H2O into the rapidly flowing reactant stream, causing a net loss of oxygen from products in the recirculation zone. However, differential diffusion of H-2 from the reactant stream into the flame more than compensates for this effect on the C/H atom balance. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.