Electrochimica Acta, Vol.175, 202-208, 2015
Direct Methanol Anion Exchange Membrane Fuel Cell with a Non-Platinum Group Metal Cathode based on Iron-Aminoantipyrine Catalyst
The objective of the current report is to compare the performance of poly(phenylene) based anion exchange membranes in an alkaline direct methanol fuel cell when platinum cathode catalysts are replaced with non-platinum cathode catalysts. In a KOH-free methanol fuel, we show that a less expensive non-Pt cathode catalyst (derived from Fe-Aminoantipyrine, Fe-AAPyr using Generations 1 and 2 sacrificial silica supports) provide better or comparable performance to commercial Pt cathode catalysts. The peak power density, current density and open circuit voltage of Fe-AAPyr-G-1 in 1 M methanol at 80 degrees C are 2.78 mW cm(-2), 19.1 mA cm(-2) and 0.7 V respectively. In a direct methanol fuel cell utilizing KOH in the fuel feed, the non-Pt catalyst shows promising peak power density of 52 mW cm(-2) with the Fe-AAPyr-G-2 cathode catalyst, comparable to a commercial Pt catalyst. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Oxygen Reduction Reaction;Anion Exchange Membrane;Fuel Cell;Direct Methanol Fuel Cell;non-Platinum Group Metal Catalyst