화학공학소재연구정보센터
Electrochimica Acta, Vol.176, 880-886, 2015
Insight on the effect of surface modification by carbon materials on the Ionic Liquid Electric Double Layer Charge Storage properties
Development of new and better performing energy storage devices rely on the use of innovative materials. The combination of nanostructured materials with high specific area, such as graphene, and conventional electrode materials such as Glassy Carbon (GC) and the use of the composite electrode in ionic liquids (IL) are considered to be a promising strategy for improved energy storage devices. Following our previous studies of electrochemical interfaces involving 1-butyl-3-methylimidazolium (tris(pentafluoroethyl) trifluorophosphate) ([C4MIM][FAP]) ionic liquid and Hg, Au, Pt and GC we extended the search for better electrochemical performance by preparing GC electrode surfaces modified with different carbon materials (reduced graphene oxide, reduced graphite oxide and graphite). Cyclic voltammetry of these electrode surfaces in [C4MIM][FAP] ionic liquid shows a 100 fold increase in the capacitive current of the composite electrode when compared with plain GC electrode. (C) 2015 Elsevier Ltd. All rights reserved.