Electrochimica Acta, Vol.177, 181-189, 2015
Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC
Porous carbon nanofibers (PCNFs) were used as the support to prepare platinum (Pt) catalyst (Pt/PCNFs) for proton exchange membrane fuel cell (PEMFC) applications. As a comparison, Pt supported on carbon black (Vulcan XC-72) (Pt/Vulcan) was also synthesized by the same ethylene glycol reduction method. Platinum was more uniformly deposited on PCNFs than that on the Vulcan XC-72. The electrocatalytic activity and stability of the resultant catalysts along with the commercial one (JM20) were investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) with a rotating disk electrode (RDE). The Pt/PCNFs exhibited much-enhanced electrocatalytic activity and stability compared with the Pt/Vulcan and JM20. The mass activity (at 0.80 V) of Pt/PCNFs is 2.6 times higher and 20% higher than that of Pt/Vulcan and JM20, respectively; the Pt/PCNFs retained about 50% of ECSA whereas JM20 and Pt/Vulcan kept only 25% and 5% of ECSA, respectively, even after 1000 cycles. Furthermore, the single cell performance of Pt/PCNFs was superior to that of Pt/Vulcan and even better than JM20 during high current densities. The cross-section of the membrane electrode assembly (MEA) showed that the Pt/PCNFs construct a loose three-dimensionally connected catalyst layer that is totally different from the tightly stacking catalyst layer composed of carbon black support. Thus, the mass transfer resistance is reduced and water drainage becomes easy when Pt/PCNFs were used as cathode catalyst. These results indicate PCNFs a promising candidate as catalyst supports for the enhancement of PEMFC performance. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Porous carbon nanofibers (PCNFs);Electrocatalyst;Oxygen reduction reaction (ORR);Membrane electrode assembly (MEA)