화학공학소재연구정보센터
Electrochimica Acta, Vol.163, 330-337, 2015
Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification
ZnO nanoparticles (ZNPs) and ZnO nanowires (ZNWs) were fabricated via electrospinning and calcination. The ZNPs and ZNWs were blended with different mass ratio by varying ZNWs from 0% to 100% and serviced as photoanodic film of dye-sensitized solar cells (DSSCs) via spin coating. The efficiency of these DSSCs reached a maximum of 2.6% at 20 wt% ZNWs. In order to improve the photovoltaic properties of ZNWs/ZNPs hybrid photoanodic film, the ZNWs/ZNPs hybrid film was modified by the incorporation of multi-walled carbon nanotubes (MWCNTs) into ZnO matrix including both ZNPs and ZNWs combined with TiCl4 post-treatment. As a result, the efficiency of DSSCs increased from 2.6% to 3.8%, which is mainly attributed to the increased dye loading, faster electron transport, and less electron loss. (C) 2015 Elsevier Ltd. All rights reserved.