화학공학소재연구정보센터
Electrochimica Acta, Vol.188, 619-624, 2016
Investigation of Ferricinium Stability Inside the Constrained Geometry of Gold Nanotube Membranes via the Utilization of Argon Plasma
Template-synthesized gold nanotube membranes (GNMs) are versatile platforms with controllable ionic or molecular transport properties. Conductivity and transport across these membranes can be tuned by applying electronic or chemical modification strategies. In a previous study, we have reported the modulation of cationic transport through GNMs by chemisorbing a ferrocene (Fc)-linked alkyl thiol to gold surface films, as well as to the nanotube walls. The modulation was achieved by controlling the oxidation state of Fc, but it degraded with time as Fc(+) is not stable in aqueous medium, and the extent of modulation varied with nanotube diameter. Herein, we present the dependence of Fc(+) decay on the nanotube diameter of GNMs. For this purpose, it was necessary to remove the Fc-thiol monolayers from gold surface films and leave the Fc-thiol groups lining the nanotube walls intact. This was achieved by applying a mild argon plasma treatment to both faces of a Fc-thiol-modified GNM sample. Our results suggest that for all cases, the Fc(+) decay obeys first order decay kinetics and as the nanotube diameter increases, the Fc(+) decay becomes faster and it resembles a flat surface-like decay pattern. We suspect that the hydrophobic character of the Fc-thiol within the constrained nanotube environment and differing counterion tendencies toward this milieu play roles in this observation. (C) 2015 Elsevier Ltd. All rights reserved.