화학공학소재연구정보센터
Electrophoresis, Vol.37, No.2, 248-255, 2016
Fully automated electrophoretically mediated microanalysis for CYP1A1 activity monitoring optimized by multivariate approach
In this study, a fully automated incapillary system was developed to monitor the activity of CYP1A1 (Cytochrome P450, family 1, subfamily A, polypeptide 1) in physiological conditions. Ethoxycoumarin, the selected substrate, undergoes an inline bioreaction in the presence of CYP1A1 supersomes and Nicotinamide adenine dinucleotide phosphate reduced as cofactor, giving rise to hydroxycoumarin, the product that was assayed. The optimization of the experimental conditions was supported by the application of a design of experiment, providing a better understanding of electrophoretic mixing parameters that influence the metabolic reactions. The results obtained in optimal conditions were compared not only to those achieved after offline metabolization but also with liver microsomes. Finally, inhibition studies were conducted showing an important decrease of hydroxycoumarin formation using apigenin as CYP1A1 potent inhibitor. This study demonstrates the usefulness of our inline system for the fully automated in vitro metabolism studies and the screening of new CYP1A1 inhibitors.