Energy, Vol.91, 1049-1056, 2015
Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation
An industrial process is synthesized and developed for decoking of de-hydrogenation catalyst, used in LAB (Linear Alkyl Benzene) production. A multi-tube fixed bed reactor, with short length tubes is designed for decoking of catalyst as the main equipment of the process. This study provides a microscopic exergy analysis for decoking reactor and a macroscopic exergy analysis for synthesized regeneration process. The dynamic mathematical modeling technique and the simulation of process by a commercial software are applied simultaneously. The used model was previously developed for performance analysis of decoking reactor. An appropriate exergy model is developed and adopted to estimate the enthalpy, exergetic efficiency and irreversibility. The model is validated with respect to some operating data measured in a commercial regeneration unit for variations in gas and particle characteristics along the reactor. In coke-combustion period, in spite of high reaction rate, the reactor has low exergetic efficiency due to entropy production during heat and mass transfer processes. The effects of inlet gas flow rate, temperature and oxygen concentration are investigated on the exergetic efficiency and irreversibilities. Macroscopic results indicate that the fan has the highest irreversibilities among the other equipment. Applying proper operating variables reduces the cycle irreversibilities at least by 20%. (C) 2015 Elsevier Ltd. All rights reserved.