Energy, Vol.93, 1447-1455, 2015
Optimizing renewable energy, demand response and energy storage to replace conventional fuels in Ontario, Canada
Electricity systems with high penetrations of renewable energy require a mix of resources to balance supply with demand, and to maintain safe levels of system reliability. A load balancing methodology is developed to determine the optimal lowest-cost mix of renewable energy resources, demand response, and energy storage to replace conventional fuels in the Province of Ontario, Canada. Three successive cumulative scenarios are considered: the displacement of fossil fuel generation, the planned retirement of an existing nuclear reactor, and the electrification of the passenger vehicle fleet. The results show that each of these scenarios is achievable with energy generation costs that are not out of line with current and projected electricity generation costs. These transitions, especially that which proposes the electrification of the vehicle fleet, require significant investment in new generation, with installed capacities much higher than that of the current system. Transitions to mainly renewable energy systems require changes in our conceptualization of, and approach to, energy system planning. (C) 2015 Elsevier Ltd. All rights reserved.