Energy, Vol.89, 946-956, 2015
Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production
In this work, Ca-doped Ce-incorporated SBA-15 (Ca/CeS) catalyst was successfully synthesized by using direct synthesis of Ce-incorporated SBA-15 followed by impregnation of CaO (calcium oxide). The maximum Si/Ce molar ratio that Ce atoms can be incorporated successfully into the mesoporous framework was found to be 5 (CeS-5). After the impregnation of 30 wt. % Ca, the obtained 30Ca/CeS-5 catalysts showed the superior catalytic performance for transesterification reaction of palm oil with methanol and also the higher catalytic activity as compared to other supported catalysts, i.e. CaO/CeO2 and CaO-CeO2/SBA-15. This can be attributed to the well-dispersion of CaO on the CeS-5 support surface. Furthermore, it was found that the leaching of Si, Ce and Ca from the catalyst into biodiesel produced was negligible (i.e. <1 ppm after 7 cycles), indicating the strong interaction between CaO and CeS-5 support. As a result, the 30Ca/CeS-5 catalyst can be reused at least 15 cycles with insignificant decrease in catalytic activity, offering the efficient CaO-based catalyst for biodiesel production. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Heterogeneous catalysts;Transesterification;Biodiesel;SBA-15;Cerium oxide;Calcium-based catalysts