화학공학소재연구정보센터
Energy, Vol.81, 563-574, 2015
A hybrid technique for short-term wind speed prediction
This study proposes a hybrid forecasting approach that consists of the EWT (Empirical Wavelet Transform), CSA (Coupled Simulated Annealing) and LSSVM (Least Square Support Vector Machine) for enhancing the accuracy of short-term wind speed forecasting. The EWT is employed to extract true information from a short-term wind speed series, and the LSSVM, which optimizes the parameters using a CSA algorithm, is used as the predictor to provide the final forecast. Moreover, this study uses a rolling operation method in the prediction processes, including one-step and multi-step predictions, which can adaptively tune the parameters of the LSSVM to respond quickly to wind speed changes. The proposed hybrid model is demonstrated to forecast a mean half-hour wind speed series obtained from a windmill farm located in northwestern China. The simulation results suggest that the developed forecasting method yields better predictions compared with those of other popular models, which indicates that the hybrid method exhibits stronger forecasting ability. (C) 2015 Elsevier Ltd. All rights reserved.