화학공학소재연구정보센터
Energy Conversion and Management, Vol.105, 1251-1260, 2015
Economic dispatch optimization algorithm based on particle diffusion
Due to the widespread installation of emissions control equipment in fossil fuel-fired power plants, the cost of emissions control needs to be considered, together with the plant fuel cost, in providing economic power dispatch of those units to the grid. On the other hand, while using wind power decreases the overall power generation cost for the power grid, it poses a risk to a traditional grid, because of its inherent stochastic characteristics. Therefore, an economic dispatch optimization model needs to consider all of the fuel cost, emissions control cost and wind power cost for each of the generating unit conforming the fleet that meets the required grid power demand. In this study, an optimization algorithm referred as diffusion particle optimization (DPO) is proposed to solve such complex optimization problem. In this algorithm, Brownian motion theory is used to guide the movement of particles so that the particles can search for an optimal solution over the entire definition region. Several benchmark functions and power grid system data were used to test the performance of DPO, and compared to traditional algorithms used for economic dispatch optimization, such as, particle swarm optimization and artificial bee colony algorithm. It was found that DPO has less probability to be trapped in local optimums. According to results of different power systems DPO was able to find economic dispatch solutions with lower costs. DPO was also used to analyze the impact of wind power risk and fossil unit emissions coefficients on power dispatch. The result are encouraging for the use of DPO as a dynamic tool for economic dispatch of the power grid. (C) 2015 Elsevier Ltd. All rights reserved.