Energy Conversion and Management, Vol.106, 748-758, 2015
Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol-diesel blends
The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in highspeed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NOx and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NOx emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NOx and soot emissions decreasing. The simulation of the combustion of n-butanol-diesel fuel blends, which was based on the n-heptane-n-butanol-PAH-toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals was able to delay the ignition time. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.
Keywords:n-Butanol-diesel blends;Pilot injection;Kinetic simulation;Engine performance;Exhaust emission