화학공학소재연구정보센터
Energy Conversion and Management, Vol.106, 1013-1023, 2015
New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique
Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and inferences on the sensitivity of the amount of global solar radiation to covariates and the magnitude and direction of effect of covariates on the global solar radiation are drawn. (C) 2015 Elsevier Ltd. All rights reserved.