Energy Conversion and Management, Vol.111, 217-228, 2016
Study of ignition delay time and generalization of auto-ignition for PRFs in a RCEM by means of natural chemiluminescence
An investigation of the effects of contour conditions and fuel properties on ignition delay time under Homogeneous Charge Compression Ignition (HCCI) conditions is presented in this study. A parametric variation of initial temperature, intake pressure, compression ratio, oxygen concentration and equivalence ratio has been carried out for Primary Reference Fuels (PRFs) in a Rapid Compression Expansion Machine (RCEM) while applying the optical technique of natural chemiluminescence along with a photo-multiplier. Additionally, the ignition delay time has been calculated from the pressure rise rate and also corresponding numerical simulations with CHEMKIN have been done. The results show that the ignition delay times from the chemical kinetic mechanisms agree with the trends obtained from the experiments. Moreover, the same mechanism proved to yield consistent results for both fuels at a wide range of conditions. On the other hand, the results from natural chemiluminescence also showed agreement with the ignition delay from the pressure signals. A 310 nm interference filter was used in order to detect the chemiluminescence of the OH* radical. In fact, the maximum area and peak intensity of the chemiluminescence measured during the combustion showed that the process of auto-ignition is generalized in the whole chamber. Moreover, the correlation of peak intensity, maximum area and ignition delay time demonstrated that natural chemiluminescence can also be used to calculate ignition delay times under different operating conditions. Finally, the area of chemiluminescence was proved to be more dependant on the fuel and ignition delay time than on the operating conditions. (C) 2015 Elsevier Ltd. All rights reserved.