Journal of Materials Science, Vol.31, No.10, 2747-2755, 1996
Cooperative Microbuckling of 2 Fibers in a Model Composite
Cooperative fibre microbuckling, a compressive failure mechanism in unidirectional fibre-reinforced composites, was studied in a model system composed of two polyamide fibres in a transparent silicone matrix. The transparent matrix permitted direct observation of fibre microbuckling during compression. In all cases fibres buckled in a sinusoidal pattern with a critical wavelength characteristic of the fibre diameter and the modulus ratio of the fibre and matrix as observed previously with single fibre composites. At smaller separation distances, the two fibres microbuckled co-operatively in the common plane. At larger separation distances, the fibres microbuckled non-co-operatively in different planes. A stress overlap criterion based on the in-plane shear stress is proposed for co-operative fibre microbuckling.