IEEE Transactions on Automatic Control, Vol.60, No.12, 3310-3315, 2015
A Second-Order Multi-Agent Network for Bound-Constrained Distributed Optimization
This technical note presents a second-order multi-agent network for distributed optimization with a sum of convex objective functions subject to bound constraints. In the multi-agent network, the agents connect each others locally as an undirected graph and know only their own objectives and constraints. The multi-agent network is proved to be able to reach consensus to the optimal solution under mild assumptions. Moreover, the consensus of the multi-agent network is converted to the convergence of a dynamical system, which is proved using the Lyapunov method. Compared with existing multi-agent networks for optimization, the second-order multi-agent network herein is capable of solving more general constrained distributed optimization problems. Simulation results on two numerical examples are presented to substantiate the performance and characteristics of the multi-agent network.