화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.54, No.24, 6334-6343, 2015
Optimal Operation Strategy for Biohydrogen Production
Hydrogen produced by microalgae is intensively researched as a potential alternative to conventional energy sources. Scaling-up of the process is still an open issue, and to this end, accurate dynamic modeling is very important. A challenge in the development of these highly nonlinear dynamic models is the estimation of the associated kinetic parameters. This work presents the estimation of the parameters of a revised Droop model for biohydrogen production by Cyanothece sp. ATCC 51142 in batch and fed-batch reactors. The latter reactor type results in an optimal control problem in which the influent concentration of nitrate is optimized which has never been considered previously. The kinetic model developed is demonstrated to predict experimental data to a high degree of accuracy. A key contribution of this work is the prediction that hydrogen productivity can achieve 3365 mL/L through an optimally controlled fed-batch process, corresponding to an increase of 116% over other recently published strategies.