화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.54, No.25, 6480-6488, 2015
In Situ Synthesis of Monodisperse Silver Nanoparticles on Sulfhydryl-Functionalized Poly(glycidyl methacrylate) Microspheres for Catalytic Reduction of 4-Nitrophenol
Immobilization of silver nanoparticles (Ag NPs) to improve monodispersity and recyclability is crucial for applications in nanocatalysts. Herein, a novel protocol for stabilizer-free, effective, and in situ synthesis of Ag NPs on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres (PGMA-SH) was proposed. Ag NPs of 16.97 +/- 3.15 nm were successfully grown on PGMA-SH, and remained monodisperse and stable even after sonication, washing, and long-term storage. Moreover, the Ag NPs on PGMA-SH (Ag NPs@PGMA-SH) composite exhibited excellent catalytic activity with an average normalized activity parameter of 4.38 x 10(-3) L.mg(-1).s(-1) toward the reduction of 4-nitrophenol, which was 1.3-132 times higher than reported in literature. The composite can be easily recycled and showed excellent reusability as a conversion higher than 92% was achieved after 10 cycles. Thus, the preparation of Ag NPs@PGMA-SH has been proven a feasible, straightforward, and effective protocol, which would facilitate the applications of Ag NPs in environmental control.