Inorganic Chemistry, Vol.54, No.23, 11405-11410, 2015
Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3
A novel LiNbO3-type (LN-type) lead zinc oxide, PbZnO3, was successfully synthesized under high pressure and temperature. Rietveld structure refinement using synchrotron powder X-ray diffraction (XRD) data demonstrated that LN-type PbZnO3 crystallized into a trigonal structure with a polar space group (R3c). The bond valence sum estimated from the interatomic distances indicated that the sample possesses a Pb4+Zn2+O3 valence state. Polarization could evolve as a result of the repulsion between constituent cations because PbZnO3 does not contain a stereochemical 6s(2) cation or a Jahn-Teller active d(0) cation. Distortion of ZnO6 octahedra resulting from cation shift is comparable with that of d(0) TiO6 in ZnTiO3 and MnTiO3 with LN-type oxides, which leads to stabilization of the polar structure. PbZnO3 exhibited metallic behavior and temperature-independent diamagnetic character. In situ XRD measurement revealed that the formation of LN-type PbZnO3 occurred directly without the formation of a perovskite phase, which is unusual among LN-type materials obtained by high-pressure synthesis.